EFFECTS OF A CATTLE FEEDLOT ON GROUND-WATER QUALITY IN THE SOUTH PLATTE RIVER VALLEY NEAR GREELEY, COLORADO # U.S. GEOLOGICAL SURVEY Water-Resources Investigations 80-83 | 5 | 0 | 2 | 7 | 2 | 1 | 0 | 1 | |---|---|---|---|---|---|---|---| | | | | | | | | | | REPORT DOCUMENTATION 1. REPORT NO. PAGE | 2. | 3. Recipient's Accession No. | |--|----------------------|---| | 4. Title and Subtitle EFFECTS OF A CATTLE FEEDLOT ON GRO | | 5. Report Date
TH 1981 | | PLATTE RIVER VALLEY, NEAR GREELI | EY, COLORADO | 6. | | 7. Author(s) | | 8. Performing Organization Rept. No. USGS/WRI 80-83 | | 9. Performing Organization Name and Address | | 10. Project/Task/Work Unit No. | | U.S. Geological Survey, Water
Box 25046, Mail Stop 415
Denver Federal Center
Lakewood, CO 80225 | r Resources Division | 11. Contract(C) or Grant(G) No. (C) (G) | | 12. Sponsoring Organization Name and Address U.S. Geological Survey, Water Box 25046, Mail Stop 415 | r Resources Division | 13. Type of Report & Period Covered Final | | Denver Federal Center Lakewood, CO 80225 15. Supplementary Notes | | 14. | #### 16. Abstract (Limit: 200 words) Ground-water quality may be changed by leachate from feedlots because large quantities of wastes are generated. The potential for water quality to be affected is especially high in alluvial aquifers with a shallow depth to water. However, monitoring water quality in 19 observation wells in and near a feedlot stocked with 90,000 head of beef cattle from April 1974, before the lot was stocked, to June 1978, has shown little change in ground-water quality that can be attributed to the feedlot. Analyses of water from two lysimeters in the unsaturated zone indicate leachate from the feedlot has percolated to a depth of at least 5 feet but not to a depth of 20 feet. The small changes in ground-water quality caused by the feedlot are likely due to the limited available recharge, a relatively impermeable manure pack and soil clogging under the cattle pens resulting in slow vertical movement of leachate through the unsaturated zone, soil clogging under the unlined runoff-retention ponds, and denitrification in the unsaturated zone. ### 17. Document Analysis a. Descriptors Colorado, Ground water, Water quality, Nitrates, Farm wastes, Water table b. Identifiers/Open-Ended Terms Feedlot, South Platte River valley c. COSATI Field/Group | 18. Availability Statement | 19. Security Class (This Report) | 21. No. of Pages
82 | |--------------------------------|----------------------------------|------------------------| | No restriction on distribution | 20. Security Class (This Page) | 22. Price | EFFECTS OF A CATTLE FEEDLOT ON GROUND-WATER QUALITY IN THE SOUTH PLATTE RIVER VALLEY NEAR GREELEY, COLORADO By R. G. Borman U.S. GEOLOGICAL SURVEY Water-Resources Investigations 80-83 ### UNITED STATES DEPARTMENT OF THE INTERIOR JAMES G. WATT, Secretary GEOLOGICAL SURVEY Doyle G. Frederick, Acting Director For additional information write to: Colorado District Chief U.S. Geological Survey, MS 415 Box 25046, Denver Federal Center Lakewood, CO 80225 ## CONTENTS | | | | Page | |----------|---------|---|------| | | | | 1 | | Introduc | ction | | 1 | | Ground-v | vater h | nydrology | 3 | | Water qu | uality- | | 12 | | | | | 20 | | Selected | reter | ences | 20 | | Suppleme | ental i | nformation | 23 | | | | | | | | | ILLUSTRATIONS | | | -• | 4.0 | | Page | | Figures | 1-3. | Maps showing: | 2 | | | | Location of study area Location of wells, lysimeters, and runoff-retention | 2 | | | | ponds | 4 | | | | 3. Bedrock topography | 5 | | | 4. | Geologic section through the feedlot | 6 | | | 5-8. | Maps showing: | | | | | 5. Depth to bedrock | 7 | | | | 6. Water table, March 1978 | 9 | | | | 7. Depth to water, March 1978 | 10 | | | | 8. Saturated thickness of the alluvial aquifer, March | 11 | | | 9-13. | Graphs showing: | 11 | | | J-13. | 9. Chloride concentrations in water from selected | | | | | wells in and near the feedlot | 15 | | | | 10. Nitrate concentrations in water from selected wells | | | | | in and near the feedlot | 15 | | | | 11. Chloride concentrations in water from selected | | | | | wells outside the feedlot | 16 | | | | 12. Nitrate concentrations in water from selected wells | | | | | outside the feedlot | 16 | | | | 13. Monthly precipitation at the feedlot and pan evap- | 17 | | | 14. | oration at Fort Collins Diagram showing system of numbering wells using township, | 17. | | | 17. | range, and section | 25 | | | | range, and section | | ### TABLES | | | | Page | |-------|-----|---|------| | Table | 1. | Minimum, median, and maximum concentrations of selected properties and dissolved constituents in water from 19 observation wells, April 1974 | 13 | | | 2. | Comparison between median concentrations of selected chemical constituents in water from the alluvial aquifer and concentrations of selected chemical constituents in runoff from the feedlot | 13 | | | 3. | Chemical analyses of water from two lysimeters | 18 | | | 4. | Records of wells | 26 | | | 5. | Water-level records and chemical analyses of water from observation wells | 28 | | | 6. | Chemical analyses of water from domestic, stock, and irrigation wells | 67 | | | 7. | Chemical analyses of water from two runoff-retention ponds and from the feedlot water system supplied by eight wells | 68 | | | 8. | Logs of wells drilled by the U.S. Geological Survey | 70 | | | 9. | Particle-size analyses, statistical characteristics, specific gravity, moisture content, total porosity, and vertical hydraulic conductivity for samples from observation wells 13 and 28 | 76 | | | 10. | Monthly precipitation, in inches, from January 1975 to
September 1978 at weather stations operated by the feedlot
owner at the feedlot and by the U.S. Department of | · | | | | Commerce, National Weather Service at Greeley, Colo | 78 | ### CONVERSION FACTORS For the use of those readers who may prefer to use metric units rather than inch-pound units, the conversion factors for the terms used in this report are listed below: | Multiply | By | To obtain | |---|--|--| | <pre>inch (in.) foot (ft) mile (mi) acre cubic foot (ft³) pound (lb) foot per day (ft/d) foot per mile foot per year (ft/yr)</pre> | 25.40
0.3048
1.609
0.4047
0.02832
0.04536
0.3048
0.3048 | millimeter meter kilometer hectare cubic meter kilogram meter per day meter per kilometer meter per year | | foot squared per day (ft^2/d) | 0.0929 | meter squared per day | # EFFECTS OF A CATTLE FEEDLOT ON GROUND-WATER QUALITY IN THE SOUTH PLATTE RIVER VALLEY NEAR GREELEY, COLORADO By R. G. Borman ### **ABSTRACT** Changes in water quality in an alluvial aquifer resulting from the operation of a feedlot stocked with 90,000 cattle have been minimal. Monitoring water quality in 19 observation wells from April 1974, prior to the operation of the feedlot, to June 1978, after about 4 years of operation, indicates that chloride concentrations have increased slightly in one well downgradient from a runoff-retention pond. Chemical analyses of water from two lysimeters installed in the unsaturated zone indicate that leachate from the feedlot has percolated to a depth of at least 5 feet but has not percolated to a depth of 20 feet. The small changes in ground-water quality caused by the feedlot are likely the result of the limited available recharge, a relatively impermeable manure pack, soil clogging under the cattle pens resulting in slow vertical movement of leachate through the unsaturated zone, soil clogging under the unlined runoff-retention ponds, and denitrification in the unsaturated zone. ### INTRODUCTION Large cattle feedlots may produce organic waste loads comparable to those produced by a medium-sized city. In the western United States, feedlots are often located in valleys where water is available for irrigating crops produced for livestock feed. These valleys frequently contain permeable alluvial deposits and have a shallow depth to ground water. The combination of large quantities of wastes, permeable deposits, and shallow depth to water increases the potential for changes in ground-water quality. A site near Greeley, Colo. (fig. 1), about 50 mi northeast of Denver, was chosen at which to monitor possible changes in ground-water quality resulting from operation of a feedlot. The climate in the area is semiarid, with an average annual precipitation of 11.47 in. during 1975-77, according to precipitation records collected at the feedlot by the operator. Stocking of the feedlot began April 26, 1974, and by the end of the year 50,000 cattle were fed each day at the site; by 1977, an average of 90,000 cattle were fed in the pens each day. Figure 1 -- Location of study area. The feedlot has an area of 500 acres of which 320 acres are fenced into pens. Storm runoff is collected in concrete-lined ditches and stored in two unlined retention ponds (fig. 2). The ponds also store overflow water from drinking troughs which are kept running during cold weather to prevent freezing. The storm water in the ponds is later mixed with water pumped from the aquifer and used for crop irrigation on adjacent land that is part of the feedlot
complex. The pens do not have concrete or lined floors and are cleaned three or four times a year. The manure is used as fertilizer by landowners within 15 mi of the feedlot. Nineteen observation wells and four lysimeters, similar to those described by Wood (1973), were installed in and near the feedlot during construction (fig. 2). Water samples were collected from the wells for chemical analysis prior to stocking of the feedlot. After stocking, samples were collected quarterly from most wells until June 1978. Samples also were collected intermittently from two of the lysimeters, the runoff-retention ponds, and the water supply at the feedlot. Samples could not be successfully obtained from the other two lysimeters. The purpose of this report is to present the data collected in the immediate vicinity of the feedlot and provide a preliminary interpretation of that data. The data-collection network was not designed to define the regional aspects of the geohydrologic system or the effects of waste removed from the immediate vicinity of the feedlot. The cooperation of the feedlot owner for allowing the installation and monitoring of the wells and lysimeters and for providing data on precipitation, feedlot operations, and the feedlot supply wells is gratefully acknowledged. ### GROUND-WATER HYDROLOGY The feedlot is located on a terrace in the South Platte River valley about 30 ft above the flood plain (fig. 2). The study area is underlain by alluvial sand and gravel deposits that comprise the aquifer. The bedrock underlying the alluvial aquifer is the Laramie Formation of Late Cretaceous age. In the study area, the Laramie Formation primarily consists of shale that restricts vertical movement of water. Therefore, only the alluvial aquifer is subject to water-quality changes caused by the operation of the feedlot. The altitude of the bedrock surface slopes from about 4,540 ft near the southwestern part of the study area to about 4,440 ft in the northeastern part of the study area (figs. 3 and 4). The depth to bedrock ranges from about 40 ft in the southwestern part of the study area to about 130 ft in the north-central part of the study area (fig. 5). The depth to bedrock in the feedlot ranges from about 65 ft near the southeastern runoff-retention pond to about 130 ft in the northern part. Figure 2 -- Location of wells, lysimeters, and runoff-retention ponds. Figure 4. -- Geologic section through the feedlot. Figure 5. -- Depth to bedrock. The aquifer underlying the feedlot is recharged by precipitation, the South Platte River, irrigation water applied to fields in excess of evapotranspiration, leakage from irrigation ditches and canals upgradient of the feedlot, and to some extent by infiltration of wastes from the livestock pens. Most of the water flowing beneath the feedlot entered the aquifer as recharge upgradient of the feedlot as indicated in figure 6. However, the data used to construct figure 6 was collected at a time when the effects of precipitation, streamflow, evapotranspiration, and pumpage were minimal. The altitude of the water table in the alluvial aquifer ranges from about 4,568 ft in the western part of the study area to about 4,550 ft in the eastern part of the study area (figs. 4 and 6). Water moves generally at right angles to the water-table contours from higher to lower altitudes and is moving approximately from west to east beneath the feedlot. The hydraulic gradient across the feedlot is about 8 ft/mi. The depth to water in the study area ranges from zero at the South Platte River to about 35 ft in the center of the feedlot (fig. 7). The saturated thickness of the alluvial aquifer ranges from about 10 ft in the southern part of the study area to about 110 ft northeast of the feedlot (fig. 8). In the feedlot, the saturated thickness ranges from about 35 ft near the southeastern runoff-retention pond to about 100 ft along the northern edge of the feedlot. Hydraulic conductivity of the aquifer beneath the feedlot is estimated to be 170 ft/d, based on logs from 10 wells in the feedlot, and the porosity is estimated to be 0.4 on the basis of laboratory analyses of core samples from well 13 (depth interval 0 to 30 ft). The average ground-water velocity is estimated to be about 230 ft/yr based on the equation: $$V = \frac{KI}{\emptyset} \times 365, \tag{1}$$ where: V = ground-water velocity, in feet per year, K = hydraulic conductivity, in feet per day, I = hydraulic gradient (dimensionless), and \emptyset = porosity (dimensionless). This estimate of ground-water velocity is probably lower than the average rate of ground-water movement beneath the feedlot because (1) the laboratory value of porosity is probably about two times greater than the average effective porosity of the aquifer and (2) gradients greater than 8 ft/mi are produced by the pumping wells within the feedlot. Figure 6. -- Water table, March 1978. Figure 7. -- Depth to water, March 1978. Figure 8. -- Saturated thickness of the alluvial aquifer, March 1978. ### WATER QUALITY Chemical characteristics of water in the alluvial aquifer prior to stocking of the feedlot are summarized in table 1. A comparison between constituents in water in the aguifer prior to selected dissolved mineral stocking of the feedlot and in runoff from the feedlot after stocking shown in table 2. The sample of runoff was obtained from the southeastern runoff-retention pond following a storm in September 1976 when water quality should most closely represent that in leachate from the manure pack. chemical quality of water in the ponds varies as shown in table 7 in the Supplemental Information section at the back of this report, because overflow from drinking troughs as well as storm runoff is stored in the ponds.) Concentrations of all constituents used in the comparison except sulfate, sodium, and nitrate were greater in the runoff from the feedlot than the median content of water from the aquifer. Sodium concentration in the runoff may have been anomalous as McCalla, Ellis, Gilbertson, and Woods (1972) determined that the mean sodium concentration in feedlot wastes generally is about 1,050 mg/L. The smaller concentration of nitrate in the runoff may have resulted because much of the nitrogen was present as ammonia and organic nitrogen and because denitrification was probably occurring. Nitrate is the chemical constituent most likely to be increased in ground water by leachate from the feedlot because of the large quantities of nitrate in feedlot wastes. A steer produces wastes containing about 0.4 lb of nitrogen daily (Taiganides and Hazen, 1966, p. 375). Therefore, the 90,000 cattle in the feedlot may produce about 36,000 lb of nitrogen daily. As much as 90 percent of the nitrogen in the manure may be lost to the atmosphere (McCalla and others, 1969, p. 5). If the remaining 10 percent of the nitrogen were mixed uniformly with the 106,000 ft³ of ground water estimated to be moving beneath the feedlot daily, the concentration of nitrate as nitrogen in the water would be about 540 mg/L. Chloride is mobile in the ground-water environment and commonly is a good indicator of water-quality degradation (Robson, 1977, p. 13). Comparisons of nitrate and chloride concentrations from April 1974 to June 1978 and trends in the concentrations of these constituents were used to determine if the leachate from the feedlot had affected water quality in the aguifer. There have been some changes in the quality of water from the 19 observation wells from April 1974, before the feedlot was stocked, to June 1978, but most changes appear to be unrelated to the feedlot. The median chloride concentration for samples from the 19 observation wells in June 1978 was 120 mg/L, compared with 100 mg/L in April 1974. The median nitrate as nitrogen concentration was 7.7 mg/L in June 1978, compared to 5.2 mg/L in April 1974. Increases in chloride and nitrate concentrations indicate some degradation of water quality. The variability of both chloride and nitrate concentrations is greater than observed changes and no major increasing trends for these constituents have been observed in water from wells most likely to be affected by leachate from the feedlot. Table 1.--Minimum, mediun, and maximum concentrations of selected properties and dissolved constituents in water from 19 observation wells, April 1974 | beviossib ,esenegneM
(nM se J/pu) | 0 | 120 | 4,900 | | | ı | |--|-------------|------------|--------------
---|--|--| | lron, dissolved
(µg/L as Fe) | 30 | 100 | 3,300 | bəvlossib ,əsənegn
(nM se J\gu) | MA 120 | 4,000 | | Phosphorus, ortho,
dissolved
(mg/L as P) | 0.02 | .03 | .07 | bevlossib ,nc
(eg/k as re) | 1 | 9,500 | | Witrogen, ammonia + organic, dissolved (mg/L as W) | 0.02 | .58 | 1.2 | control or tho, size of the size of the size of the size of size of size of the t | 0.03 | 100 | | Nitrogen, nitrate,
dissolved
(mg/L as N) | 0.44 | 5.2 | 28 | selected chamical concentrations the feed chamical feed chamical (mg/L as N) rrogen, ammonia + crogen, ammonia + crogen; ar N) rrogen, ammonia + crogen, ammonia + crogenic, dissolved (mg/L as N) | | 220 | | or som of solilos, sum of constituents, (mg/L) | 1,360 | 1,810 | 3,560 | | | 9.1 | | beviossib ,ebiroul7
(mg/L as F) | 1.0 | 1.5 | 2.1 | oride, dissolved (mg/L as CI) | 100 | 380 | | Chloride, dissolved
(mg/L as Cl) | 79 | 100 | 180 | face, dissolved "marticological adults of face, dissolved" "marticological action of face, dissolved and face, dissolved are solved as \$10 to t | ns 880 | 480 | | b∋vlossib ,edellu2
(mg/L as \$0⊾) | 099 | 880 | 2,000 | lian cortination cortical cortination cortical cortination cortical cortica |) i 8 | 1,810 | | Bicarbonate
(mg/L as HCO ₃) | 302 | 404 | 959 | Constituents in water from the altwist aquifer and constituents in water from the altwist aquifer and cissolved dissolved diss | | 069 | | Potassium, dissolved
(mg/L as K) | 4.8 | 6.7 | 10 | themical herry between the her | | 210 | | bevlozsib ,muibo2
(my/L as Na) | 160 | 220 | 009 | omparised the state of stat | | 210 | | bəvlozsin, muizənyeM
(pM ze J\pm) | 72 | 96 | 160 | of tri-
cium, dissolved spin sel-
mg/L as Ca) | | - 540 | | bəviozzib ,muiɔlɛJ
(sə ze 1/gm) | 180 | 220 | 340 | Table cons | ation
er, | E | | Hardness, noncarbon-
ete (mg/L as CaCO ₃) | 490 | 049 | 1,100 | | 1 5 4- 1 | ion from
tern
on pond,
er 1976 | | e seanbre ^H
(₆ 00e0 se J\gm) | Minimum 750 | Median 960 | Maximum1,500 | | Median concentr
for the aquif
April 1974 | Concentration
southeastern
retention por
September 19 | Chloride (fig. 9) and nitrate (fig. 10) concentrations in water from wells 16, 25, 26, 30, and 32 that are either in the feedlot or downgradient from the feedlot illustrate the lack of consistent trends. Neither chloride nor nitrate has increased in water from wells 16 and 30. An overall but steady increase in chloride concentrations and an overall but not steady decrease in nitrate concentrations has occurred in water from wells 25 and If water in these wells was affected by leachate from the feedlot, an increase in both chloride and nitrate would be expected. A slightly more regular increase in chloride and a decrease in nitrate has occurred in water from well 32. This well is downgradient from the southeastern runoff-retention pond and water in the vicinity of the well may be slightly affected by runoff leaking from the pond. The decrease in the nitrate concentration the well water may be due to the relatively small nitrate concentration in water in the runoff-retention ponds, which ranged from 0.04 to 3.7 mg/L as nitrogen in four analyses. Water from wells 6, 11, and 37, which should not be affected by feedlot operations because they are not downgradient from the feedlot, showed some changes in chloride concentrations from April 1974 to June 1978 (fig. 11). Water from well 6 had a fairly constant chloride concentration with a slight increase in chloride concentration from April 1974 to June 1978. Water from wells 11 and 37 had an irregular trend in chloride concentrations with an overall slight increase in chloride concentrations from April 1974 to June 1978. Nitrate concentrations in water from wells 6 and 11 have been fairly constant with little overall change during the monitoring period (fig. 12). Water from well 37 had some variations in nitrate concentrations and a slight increase in nitrate from April 1974 to March 1978. There was a large increase in nitrate concentrations from March to June 1978 in water from this well. The changes in water quality from sample to sample from the same well are due to differences in chemical quality of water moving past the well. These differences in water quality in the aquifer with time are caused largely by differences in concentrations of chemical constituents in recharge water reaching the aquifer, mostly upgradient of the sampling point. In the South Platte River valley, much recharge comes from irrigation water, both applied to fields and leaking from irrigation canals and ditches. The chemical quality of this water changes from year to year and seasonally. The quantity of irrigation water also changes seasonally. Pulses of recharge water with differences in chemical quality reach the aquifer and then move downgradient, causing differences in chemical quality with time at any sampling point. Figure 9. -- Chloride concentrations in water from selected wells in and near the feedlot. Figure 10. -- Nitrate concentrations in water from selected wells in and near the feedlot. Figure 11. -- Chloride concentrations in water from selected wells outside the feedlot. Figure 12. -- Nitrate concentrations in water from selected wells outside the feedlot. Water samples from lysimeters installed at 5- and 20-ft depths below land surface in the unsaturated zone near wells 13, 14, 15, and 16 in the feedlot indicate that leachate from the feedlot surface has percolated to a depth of at least 5 ft but not to a depth of 20 ft (table 3). Lysimeter samples first obtained in July 1975 indicate leachate from the feedlot was present in the soil moisture at a depth of 5 ft below land surface. The small amount of water obtained from the shallower lysimeter had a nitrite plus nitrate concentration of 230 mg/L as nitrogen and a chloride concentration of 210 mg/L. Water from the deeper lysimeter had a nitrite plus nitrate concentration of 7.2 mg/L as nitrogen and a chloride concentration of 42 mg/L. The concentrations of nitrite plus nitrate and chloride have not changed significantly from July 1975 to June 1978. Factors that may be responsible for the small changes in water quality in the alluvial aquifer in the study area, despite large quantities of wastes generated in the feedlot, include limited recharge from the feedlot because of a relatively impermeable manure pack and soil clogging under the pens, resulting in slow vertical movement of leachate in the unsaturated zone, soil clogging under the runoff-retention ponds, and denitrification in the unsaturated zone. The relatively small amount of precipitation and large potential evaporation (fig. 13) mean that little water is available for recharge. Cattle wastes and water sprinkled on the pens to control dust are potential sources of recharge. However, the total of all sources of recharge is relatively small in comparison to the quantity of water moving beneath the feedlot. Figure 13. -- Monthly precipitation at the feedlot and pan evaporation at Fort Collins. Infiltration to the unsaturated zone beneath the pens is inhibited by the relatively impermeable manure pack. The infiltration rate of undisturbed complete feedlot soil cores was reported by Mielke and Mazurak (1976, p. 344) to range from 1.2 x 10^{-4} ft/d to 7.5 x 10^{-4} ft/d. Clogging of pore spaces by organic material also occurs beneath the pens. Manure packs that are unused, however, dry and crack, thus opening the manure pack and the surrounding area to water and oxygen. Such
conditions promote leaching of nitrate down the soil profile to the water table (Mielke and Ellis, 1976, p. 74). Observation indicates that leakage from the unlined runoff-retention ponds may be restricted because of soil clogging by suspended material in the runoff water. Schuman and McCalla (1975, p. 115) also reported that feedlot lagoon water applied to soil cores caused clogging. When water levels in the ponds decline, the clogged soil dries, cracks, and may allow some leakage as water levels in the ponds rise and before clogging reoccurs. Table 3.--Chemical analyses of | ample
conductance | <u></u> | | caco ₃) | dissolved
s Ca) | dissolved
Mg) | dissolved
as Na) | rption | dissolved
K) | |---|---------------------------|---------------------|------------------------|--------------------------|-----------------------|-------------------------|----------------------------|---------------------| | Date of sample (Y-M-D) | (micromhos)
pH (units) | Temperature
(°C) | Hardness
(mg/L as (| Calcium, dis
(mg/L as | Magnesium, (mg/L as 1 | Sodium, dis
(mg/L as | Sodium-adsorption
ratio | Potassium, (mg/L as | | | | | FT LYSIM | ETER | | | | | | 75-07-23 4,5
76-06-29 5,0
76-09-22
76-12-08 13,7
77-03-08 13,7 | 00 7.2

20 | 27.0
12.5
 | | |
 |

320 | |

14 | | 77-06-15 77-09-13 ¹ 4,2 77-12-06 78-03-09 ¹ 4,0 78-06-20 | 74 | | 2,100 | 600 | 140

 | 320

 | 3.1 | 15

 | | | | 2 <u>Q</u> - | FT LYSIM | ETER | | | | | | 75-07-23 1,5
76-06-29 1,7
76-09-22
76-12-08 ¹ 1,6
77-03-08 | 00 6.9 | 23.0 | | |

 |

81 | |

18 | | 77-06-15 77-09-13 ¹ 1,9 77-12-06 78-06-20 | 53 | | 990

 | 290

 | 65

 | 92

 | 1.3 | 18

 | $^{^{\}mathrm{l}}$ Laboratory value. water from two lysimeters | Chloride, dissolved
(mg/L as Cl) | Solids, residue,
dissolved (mg/L) | Nitrogen, nitrate,
dissolved (mg/L as N) | Nitrogen, nitrite,
dissolved (mg/L as N) | Nitrogen, NO ₂ + NO ₃ ,
dissolved (mg/L as N) | Nitrogen, ammonia,
dissolved (mg/L as N) | lron, dissolved
(μg/L as Fe) | Manganese, dissolved
(µg/L as Mn) | Zinc, dissolved
(µg/L as Zn) | Carbon, organic,
dissolved (mg/L as C) | |-------------------------------------|--------------------------------------|---|---|--|---|---------------------------------|--------------------------------------|---------------------------------|---| | | | | 5 | FT LYS | IMETER | | | | | | 210
300 | 4,550 | 170 | 0.07 | 230
170 | 0.78 | | | |
36 | | 200
230 | 2,950
3,750 | 150
220 | .05 | 150
220 | .41
.36 | | | | | |
240 |
3,670 | | .07 | | 1.1 | 130 | 120 | 26,000 | | | | | 210 | .10 | 210 | •95 | | | | | | 220
260 | 3,330
4,090 | 120
240 | .15
.00 | 120
240 | .12 | | | | | | 200 | 4,050 | 240 | .00 | 240 | .00 | | | | | | | | | 20 | -FT LYS | IMETER | | | | | | 42
33 | 1,090 | 5.0 | .17 | 7.2
5.2 | .69 | | | |
8.9 | | 32 | 1,210 | 3.5 | .11 | 3.6 | .50 | | | | | | 31 | 1,260 | 2.7 | .05 | 2.7 | .50 | | | | | |
37
 | 1,370 | 6.9 | .09
4.4 | 7.0
3.9 |
.07
.06 | 100 | 170
 | 17,000 | | | 34 | | 2.9 | .09 | 3.0 | .01 | | | | | A relatively slow rate of vertical movement of leachate may mean that not enough time has elapsed for leachate to reach the saturated zone. The rate of vertical movement of water in the unsaturated zone under fields and animal pens in the middle South Platte Valley of Colorado has been estimated to be always less than 4 ft/yr and generally less than 1.2 ft/yr (Stewart and others, 1967a, p. 46). Future changes in ground-water quality beneath the feedlot are likely to be minimal even when leachate reaches the saturated zone. The volume of water in the unsaturated zone reaching the water table is small, compared with the volume of ground water moving beneath the feedlot. Consequently, the concentrations of chemical constituents in the leachate will be diluted on reaching the saturated zone. Denitrification occurring in the soil profile also will lessen the impact of leachate on the concentration of nitrates in ground water. Concentrations of nitrite and nitrate nitrogen in water in the unsaturated zone under the feedlot should be larger than the potential of 540 mg/L calculated for ground water because of smaller volumes of water in the unsaturated zone. Water samples from the 5-ft lysimeter, however, averaged 190-mg/L nitrite and nitrate nitrogen for seven analyses, indicating denitrification is occurring in the soil profile under the manure pack. ### **SUMMARY** Water samples collected from 19 observation wells from April 1974, before the feedlot was stocked, to June 1978, when 90,000 cattle were fed, have indicated that few water-quality changes can be attributed to the feedlot despite the large quantities of generated waste. Water analyses from two lysimeters in the unsaturated zone indicate leachate from the feedlot has percolated to a depth of at least 5 ft but has not percolated to a depth of 20 ft. The small changes in ground-water quality caused by the feedlot are likely due to the limited available recharge, a relatively impermeable manure pack, soil clogging under the cattle pens resulting in slow vertical movement of leachate through the unsaturated zone, soil clogging under the unlined runoff-retention ponds, and denitrification in the unsaturated zone. ### SELECTED REFERENCES - Ciravolo, T. G., Martens, D. C., Hallock, D. L., Collins, E. R., Jr., Kornegag, E. T., and Thomas, H. R., 1979, Pollutant movement to shallow ground water tables from anaerobic swine waste lagoons: Journal of Environmental Quality, v. 8, no. 1, p. 126-130. - Crosby, J. W., III, Johnstone, D. L., and Fenton, R. L., 1971, Migration of pollutants in a glacial outwash environment: Water Resources Research, v. 7, no. 1, p. 204-208. - Elliott, L. F., McCalla, T. M., Mielke, L. N., and Travis, T. A., 1972, Ammonium, nitrate, and total nitrogen in the soil water of feedlot and field soil profiles: Applied Microbiology, v. 28, no. 4, p. 810-813. - Gillham, R. W., and Webber, L. R., 1969, Nitrogen contamination of ground-water by barnyard leachates: Water Pollution Control Federation Journal, v. 41, no. 10, p. 1752-1762. - Hurr, R. T., and Schneider, P. A., Jr., 1972, Hydrogeologic characteristics of the valley-fill aquifer in the Greeley reach of the South Platte River valley, Colorado: U.S. Geological Survey Open-File report, 2 p., 6 maps. - Lorimor, J. C., Mielke, L. N., Elliott, L. F., and Ellis, J. R., 1972, Nitrate concentrations in groundwater beneath a beef cattle feedlot: Water Resources Bulletin, v. 8, no. 5, p. 999-1005. - McCalla, T. M., Ellis, J. R., Gilbertson, C. B., and Woods, W. R., 1972, Chemical studies of solids, runoff, soil profile and groundwater from beef cattle feedlots at Mead, Nebraska: Cornell University Agricultural Waste Management Conference, Syracuse, N.Y., 1972, Proceedings, p. 211-223. - McCalla, T. M., Ellis, J. R., and Woods, W. R., 1969, Changes in the chemical and biological properties of beef cattle manure during decomposition: Bacteriological Proceedings, p. 4-5. - Mielke, L. N., and Ellis, J. R., 1976, Nitrogen in soil cores and ground water under abandoned cattle feedlots: Journal of Environmental Quality, v. 5, no. 1, p. 71-74. - Mielke, L. N., Ellis, J. R., Swanson, N. P., Lorimor, J. C., and McCalla, T. M., 1970, Groundwater quality and fluctuations in a shallow unconfined aquifer under a level feedlot: Cornell University Agricultural Waste Management Conference, Rochester, N.Y., 1970, Proceedings, p. 31-40. - Mielke, L. N., and Mazurak, A. P., 1976, Infiltration of water on a cattle feedlot: Transactions of the American Society of Agricultural Engineers, v. 19, no. 2, p. 341-344. - Mosier, A. R., Haider, K., and Clark, F. E., 1972, Water soluble organic substances leachable from feedlot manure: Journal of Environmental Quality, v. 1, no. 3, p. 320-322. - Robson, S. G., 1977, Ground-water quality near a sewage-sludge recycling site and a landfill near Denver, Colorado: U.S. Geological Survey Water-Resources Investigations 76-132, 137 p.; available from U.S. Department of Commerce, National Technical Information Service, Springfield, VA 22161, as report PB-269 294/AS. - Schuman, G. E., and McCalla, T. M., 1975, Chemical characteristics of a feedlot soil profile: Soil Science, v. 119, no. 2, p. 113-118. - Stewart, B. A., Viets, F. G., Jr., Hutchinson, G. L., and Kemper, W. D., 1967a, Nitrate and other water pollutants under fields and feedlots: Environmental Science and Technology, v. 1, no. 9, p. 736-739. - Stewart, B. A., Viets, F. G., Jr., Hutchinson, G. L., Kemper, W. D., Clark, F. E., Fairbourn, M. L., and Strauch, F., 1967b, Distribution of nitrates and other water pollutants under fields and corrals in the middle South Platte Valley of Colorado: U.S. Department of Agriculture, Agricultural Research Service, 41-134, 206 p. - Taiganides, E. P., and Hazen, T. E., 1966, Properties of farm animal excreta: American Society of Agricultural Engineers Transactions, v. 9, no. 3, p. 374-376. - Texas Tech University, 1971, Infiltration rates and ground-water quality beneath cattle feedlots, Texas High Plains: U.S. Environmental Protection Agency, Water Pollution Control Research Series 16060 EGS 01/71, 55 p. - Wood, W. W., 1973, A technique using porous cups for water sampling at any depth in the unsaturated zone: Water Resources Research, v. 9, no. 2, p. 486-488. SUPPLEMENTAL INFORMATION # System of Numbering Wells Using Township, Range, and Sections The system of numbering wells using
township, range, and section is illustrated in figure 14. The well numbers used in tables 4 to 10 are based on this numbering system. Figure 14. -- System of numbering wells using township, range, and section. Table 4.--Records of wells [Use of well or water: H, domestic, I, irrigation, O, observation; S, stock, U, unused; Z, destroyed] | sisylens lesimed) d no 2 eldes ni | 2,00 | φ ω | |) 1 | וא ו וא | ~ ~ | |---|----------------------------------|-------------|----------------------------------|-----------------------|------------------------------|----------------------| | Water-level measure-
Rents in table 5 | Yes Y | , se | | | Yes Yes | Yes | | Depth to bedrock
(feet) | | 115 | | 134 | 115
140
128 | | | Altitude of land surface has | 4,555
4,555
4,575
4,575 | 4,585 | 4,575 | 4,599 | 4,595
4,592
4,599 | 4,599 | | Use of well or water | 3 F F 0 | - 0 | | - ഗ | 0 % 0 | 0 0 | | Well yield
(gallons per
minute) | 15 | | | 726 | 632 | | | netemb gnized
(zedni) | 2 2 2 4 | । न | <u> </u> | 92 | 4 91 | 4 4 | | Depth of well
(feet) |
60
40
75 | 107 | 100 | 135 | 78
142
122 | 77 | | Interval open to
the aquifer
(feet) | 50- 60 | 55 - 75 | | 120-135 | 48- 78
127-142
118-122 | 73-77 | | and
ar
led | 1964 | 1954 | 1960 | 1973 | 1974
1973
1973 | 1973 | | # 6 - | i ' i ' | | • | | | | | Month and
year
drilled | July
Apr. | May
Mary | | Mar. | May
Dec. | Dec. | | Colorado water well permit number | } | | 11866R |)-RF Mar. | 14412-RF May | Dec. | | тэdлии 1 імтэд | July Apr. | May
Mar. | 11866R | 11030-RF Mar. | 14412-RF | U.S. Government Dec. | | Colorado water well
Tadmun jimnaq | | 11539R May | Roy Rothermon Claster Surfection | FeedlotR11030-RF Mar. | U.S. Government | | | 50 50 50 50 | 1 1 | יע ה | י יי | 72 | i | 2 | r٧ | 2 | 1 | 2 | ı | , | 1 | 9 | 2 | ı | 1 | |---|--------------------|--------------------|----------------------|--------|---------------|----------------------|-------------|-------------|--------------|--------|---------|----------------|-----------|------------|------------|------------|--------| | , | 1 1 | < < < | ves. | Ves | ! | , es | Yes | -kes | 1 | у́еѕ | ; | ; | ! | - | Yes | } | - | | | 78 | 66 ! | ļ | 100 | ; | 108 | ; | ; | 95 | 69 | ; | 113 | ; | 65 | 89 | 28 | 70 | | 4,598
4,565
4,589
4,589
4,589 | 4,585
4,583 | 4,588 | 4,588 | 4,584 | 4,585 | 4,592 | 4,592 | 4,592 | 4,588 | 4,582 | 4,585 | 4,596 | 4,597 | 4,593 | 4,586 | 4,595 | 4,595 | | 0 - 0 0 0 | 2 8 | 0 0 | 0 | 0 | S | 0 | 0 | 0 | s | 0 | s | S | S | - | 0 | - | S | | | 30 |

 | E
E
1 | | 800 | 1 | ! | !
!
! | | 1 1 1 | 725 | 614 | 1,000 | | 1 | 895 | 20 | | 7 8 7 7 7
7 7 | ر
م
م | -1, -1 | - 47 | 4 | 16 | 4 | Ť | -3" | 16 | 4 | 18 | 16 | ; | 18 | 4 | 18 | ٠٠ | | 50
37
113
73
38 | 93
85 | 96 | 94 | 96 | 160 | 103 | 89 | 44 | 97 | 89 | 89 | 114 | 85 | 62 | 9 9 | 70 | 20 | | 56 - 60
109-113
69- 73
34- 38 | 65- 85 | 96 - 96 | | 06 -09 | 140-160 | 99-103 | 89 -49 | 44 -04 | 82- 97 | 89 -84 | 38- 68 | 99-114 | ! | 39- 62 | 89 - 49 | 59- 70 | 62- 70 | | 1973
1935
1974
1974
1974 | 1970 | 1974 | 1974 | 1974 | 1973 | 1973 | 1974 | 1974 | 1973 | 1974 | 1953 | 1973 | 1961 | 1954 | 1974 | 1954 | 1960 | | | = = | = = | _ | - | | _ | | - | _ | | | | | **** | | | | | Mar. 1 | July 19
Aug. 19 | Mar. 19 | | Mar. 1 | Aug. 1 | Dec. 1 | Mar. 1 | Mar. 1 | Aug. 1 | Mar. 1 | | Apr. 1 | May 1 | June 1 | Mar. 1 | - | Feb. 1 | | | July
1-RF Aug. | | | | | • | - | | _ | - | | Apr. | Мау | June | | Мау | Feb. | | Dec Mar Mar. | July
Aug. | | Mar. | | Aug. | • | - | | Aug. | - | Feedlot | | | | | - | | | ms 10480R | | Mar. | U.S. Government Mar. | Mar. | 15226-RF Aug. | U.S. Government Dec. | Mar. | Mar. | 3998-RF Aug. | Mar. | 8571R | R11681-RF Apr. | 3129Ғ мау | 8571R June | Mar. | 10100R May | Feb. | ¹Feet above National Geodetic Vertical Datum of 1929. Table 5.--Water-level records and chemical [Well number 4 on figure 2. Local well number is SB00506333BBA1. Depth | DATE OF
WATER-LEVEL
MEASUREMENT | WATER
LEVEL
(FEET
BELOW
LAND
SURFACE) | DATE
OF
SAMPLE | SPE-
CIFIC
CON-
DUCT-
ANCE
(MICRO-
MHOS) | PH
(UNITS) | TEMPER-
ATURE
(DEG C) | HARD-
NESS
(MG/L
AS
CACO3) | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | CALCIUM,
DIS-
SOLVED
(MG/L
AS CA) | |--|--|--|--|---|---|---|---|---| | 74-04-04
74-05-08
74-06-14
74-07-23
74-08-27 | 4.55
5.03
4.34
4.93
4.84 | 74-04-04
74-05-09
74-06-14
74-07-24
74-08-28 | 2190
2190
2190
2190
2170 | 7.2
7.4
7.5
7.5 | 12.5
13.0
13.5
14.5
13.5 | 860
830
800
820
860 | 540
510
480
500
540 | 210
200
190
200
210 | | 74-10-03
74-11-11
74-12-05
75-02-06
76-12-08 | 4.74
4.78
4.93
4.86
4.40 | 74-10-04
74-11-11
74-12-05
75-02-06
76-12-08 | 2160
2150
2400
2300
2100 | 7.2
6.8
7.1
7.5 | 13.5
13.0
13.0
12.5
13.5 | 850
770
840
830
840 | 520
450
520
510
530 | 210
200
210
200
200 | | 77-03-08
77-06-15
77-09-13
77-12-06
78-03-09 | 4.71
5.35
4.90
4.46
4.65 | 77-03-08
77-06-15
77-09-13
77-12-06
78-03-09 | 2400
2400
2200
2200
2400 | 7.6
7.5
7.4
7.3
7.4 | 13.5
14.5
13.5
12.5
13.0 | 850
860
880
870
920 | 530
550
560
540
600 | 210
210
210
210
220 | | 78-06-20 | 3.84 | 78-06-20 | 2300 | 7.4 | 13.5 | 910 | 570 | 220 | | DATE OF
WATER-LEVEL
MEASUREMENT | | DATE
OF
SAMPLE | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | | 74-04-04
74-05-08
74-06-14
74-07-23
74-08-27 | 4.55
5.03
4.34
4.93
4.84 | 74-04-04
74-05-09
74-06-14
74-07-24
74-08-28 | 1.3
1.2
1.3 | 17
17
20
17
17 | 1630
1570
1500
1580
1590 | 5.2
6.5
4.7 | .51
.02
.01
 | 5.7
6.5
4.7
6.0
5.9 | | 74-10-03
74-11-11
74-12-05
75-02-06
76-12-08 | 4.74
4.78
4.93
4.86
4.40 | 74-10-04
74-11-1
74-12-05
75-02-06
76-12-08 | 1.3
5.1.3
5.1.2 | 17
17
16
17
16 | 1630
1490
1570
1630
1650 | 6.7
5.7
6.6
9.4 | .00
.00
.00
.00 | 5.8
6.7
5.7
6.6
9.4 | | 77-03-08
77-06-15
77-09-13
77-12-06
78-03-09 | 4.71
5.35
4.90
4.46
4.65 | 77-03-08
77-06-15
77-09-13
77-12-06
78-03-09 | 1.3
1.3
1.3 | 18
16
17
17
16 | 1610
1650
1660
1650
1680 | 6.7
7.2
7.2
8.3
8.1 | .01
.00
.00
.00 | 6.7
7.2
7.2
8.3
8.1 | | 78-06-20 | 3.84 | 78-06-20 | 1.2 | 14 | 1650 | 7.0 | .02 | 7.0 | analyses of water from observation wells is 75 ft. Intervals open to the aquifer is 15 to 35 ft and 55 to 75 ft] | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | BICAR-
BONATE
(MG/L
AS
HCO3) | CAR-
BONATE
(MG/L
AS CO3) | ALKA-
LINITY
(MG/L
AS
CACO3) | SULFATE,
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | |--|--|---|---|---|------------------------------------|--|--|---| | 81
80
79
77
82 | 210
200
200
210
200 | 3.1
3.0
3.1
3.2
3.0 | 5.2
5.2
4.9
5.1
6.0 | 393 '
389
386
389
388 | 0
0
0
 | 322
319
317
319
318 | 810
760
720
770
770 | 79
89
77
84
87 | | 78
66
77
80
83 | 200
210
200
210
210 | 3.0
3.3
3.0
3.2
3.2 | 5.1
3.3
4.8
5.0
5.2 | 400
387
391
393
385 |

0 | 328
317
321
322
316 | 810
700
760
800
820 | 83
73
85
92
86 | | 80
81
87
84
89 | 210
210
220
200
190 | 3.1
3.1
3.2
3.0
2.7 | 5.1
5.1
4.9
5.1
5.2 | 396
380
390
400
390 | 0
0
0
0 | 325
312
320
330
320 | 770
820
810
810
800 | 90
88
89
85
130 | | 88 | 210 | 3.0 | 5.2 | 420 | 0 | 340 | 780 | 97 | | | | | | | | | | | | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L)
AS N) | ORGANIC | PHORUS, |), IRON,
DIS- | (UG/L |) | | | | |
GEN,
AMMONIA
DIS-
SOLVED
(MG/L) | GEN,AM-
MONIA -
ORGANIC
DIS.
(MG/L | PHORUS,
PORTHO
DIS-
SOLVED
(MG/L | IRON, DIS- SOLVE | NESE,
DIS-
D SOLVED
(UG/L |) | | | | | GEN,
AMMONIA
DIS-
SOLVED
(MG/L)
AS N)
.02
.02
.01 | GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
.82
.27
.35 | PHORUS,
ORTHO
DIS-
SOLVED
(MG/L
AS P)
.03
.01
.02
.05 | 30
130
30
30
130
20
20 | NESE,
DIS-
D SOLVED
(UG/L
AS MN)
30
50
0 |) | | | | | GEN,
AMMONIA
DIS-
SOLVED
(MG/L)
AS N)
.02
.02
.01

.01 | GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
.82
.27
.35

.42
.23
.41
.24
.37 | PHORUS,
ORTHO
DIS-
SOLVED
(MG/L
AS P)
.03
.01
.02
.05
.07
.04
.03
.05
.03 | 30
130
20
20
20
40
10
10 | NESE,
DIS-
D SOLVED
(UG/L
AS MN)
30
50
0
0
0 |) | | | | Table 5.--Water-level records and chemical [Well number 6 on figure 2. Local well number is SB00506330CDC1. | DATE OF
WATER-LEVEL
MEASUREMENT | WATER
LEVEL
(FEET
BELOW
LAND
SURFACE) | DATE
OF
SAMPLE | SPE-
CIFIC
CON-
DUCT-
ANCE
(MICRO-
MHOS) | PH
(UNITS) | TEMPER-
ATURE
(DEG C) | HARD-
NESS
(MG/L
AS
CACO3) | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | CALCIUM,
DIS-
SOLVED
(MG/L
AS CA) | |--|--|--|--|---|---|---|---|---| | 74-04-04
74-04-08
74-06-14
74-07-23
74-08-27 | 26.58
26.90
23.78
25.82
25.43 | 74-04-04
74-05-09
74-06-14
74-07-24
74-08-28 | 2820
2810
2780
2760
2760 | 7.3
7.4
7.4
7.5 | 11.0
11.5
12.0
13.0
12.0 | 1000
1000
1000
970
990 | 640
640
620
600
620 | 290
290
280
270
280 | | 74-10-03
74-11-11
74-12-05
75-02-06
75-05-14 | 24.82
25.48
26.00
26.51
25.88 | 74-10-04
74-11-11
74-12-05
75-02-06
75-05-14 | 2770
2900
3600
3100
3750 | 7.3
7.1
7.1
7.3 | 11.5
11.0
12.0
11.0
12.5 | 1100
920
1100
1100
1100 | 720
550
680
720
700 | 320
250
300
310
310 | | 75-08-11
75-12-02
76-03-29
76-06-28
76-09-22 | 25.49
25.08
26.24
25.66
24.71 | 75-08-11
75-12-02
76-03-29
76-06-28
76-09-22 | 3800
3800
3000
2700
3000 | 7.5
7.4
7.5
7.2
7.1 | 13.5
12.5
11.5
12.5
12.0 | 1100
1100
1100
1100
1100 | 740
710
680
650
7 20 | 310
310
310
300
320 | | 76-12-08
77-03-08
77-06-15
77-09-13
77-12-06 | 25.38
26.21
26.07
25.35
25.56 | 76-12-08
77-03-08
77-06-15
77-09-13
77-12-06 | 2900
3200
3250
3100
3200 | 7.5
7.6
7.5
7.3
7.4 | 11.5
12.5
12.5
12.0
10.5 | 1200
1100
1200
1100
1100 | 760
730
760
710
730 | 320
320
330
320
310 | | 78-04-09
78-06-20 | 26.56
26.04 | 78-03-09
78-06-20 | 3400
3000 | 7.4
7.6 | 11.0
12.0 | 1200
1200 | 780
770 | 330
330 | | DATE OF
WATER-LEVEL
MEASUREMENT | WATER
LEVEL
(FEET
BELOW
LAND
SURFACE) | DATE
OF
SAMPLE | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | | 74-04-04
74-04-08
74-06-14
74-07-23
74-08-27 | 26.58
26.90
23.78
25.82
25.43 | 74-04-04
74-05-09
74-06-14
74-07-24
74-08-28 | 1.1
1.0
.9
.9
1.0 | 19
19
22
19
19 | 2210
2070
2050
2040
2050 | .73
1.5
1.7 | .02
.01
.01
 | .75
1.5
1.7
.88
.83 | | 74-10-03
74-11-11
74-12-05
75-02-06
75-05-14 | 24.82
25.48
26.00
26.51
25.88 | 74-10-04
74-11-11
74-12-05
75-02-06
75-05-14 | 1.0
.8
1.4
.9 | 19
18
22
19
18 | 2190
2010
2200
2350
2300 | 1.1
.94
1.0
1.0 | .00
.01
.00
.00 | 1.1
.95
1.0
1.0 | | 75-08-11
75-12-02
76-03-29
76-06-28
76-09-22 | 25.49
25.08
26.24
25.66
24.71 | 75-08-11
75-12-02
76-03-29
76-06-28
76-09-22 | 1.0
1.1
.9
.9
1.0 | 18
18
18
18 | 2310
2340
2230
2130
2350 | 1.4
1.1
1.6
1.7
1.9 | .01
.01
.00
.00 | 1.4
1.1
1.6
1.7
1.9 | | 76-12-08
77-03-08
77-06-15
77-09-13
77-12-06 | 25.38
26.21
26.07
25.35
25.56 | 76-12-08
77-03-08
77-06-15
77-09-13
77-12-06 | .9
.9
1.0
1.0 | 17
19
18
20
17 | 2340
2270
2350
2300
2460 | .70
1.8
1.7
2.6
.69 | .00
.01
.00
.00 | .70
1.8
1.7
2.6
.70 | | 78-04-09
78-06-20 | 26.56
26.04 | 78-03-09
78-06-20 | •9
•9 | 16
15 | 2480
2410 | .60
1.8 | .01
.03 | .61
1.8 | analyses of water from observation wells--Continued Depth is 89 ft. Interval open to the aquifer is 59 to 89 ft] | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | BICAR-
BONATE
(MG/L
AS
HCO3) | CAR-
BONATE
(MG/L | ALKA-
LINITY
(MG/L
AS
CACO3) | SULFATE,
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | |--|---|--|---|--|--|--|--|---| | 73
73
73
72
71 | 340
290
300
300
300 | 4.6
3.9
4.1
4.2
4.1 | 7.6
7.8
7.3
6.1
9.0 | 474
474
468
455
454 | 0
3 0
5 | 389
389
384
373
372 | 1100
1000
1000
1000
1000 | 140
150
130
140
140 | | 71
71
74
80
73 | 300
300
310
320
320 | 4.0
4.3
4.2
4.2
4.2 | 8.5
5.1
6.7
8.4
6.9 | 458
453
456
473
461 | 3
5
3 | 376
372
374
388
378 | 1100
1000
1100
1200
1200 | 140
140
150
170
140 | | 85
78
78
78
80 | 310
340
310
310
320 | 4.0
4.5
4.1
4.1
4.1 | 8.1
8.5
8.6
8.0
8.4 | 472
465
506
515
494 | 5 0
5 0
5 0 | 387
381
415
422
405 | 1200
1200
1100
1000
1200 | 140
150
150
150
150 | | 85
80
80
80
88 | 320
330
320
340
340 | 4.1
4.3
4.1
4.4
4.4 | 8.2
7.7
8.0
7.8
8.1 | 472
492
480
510
490 | 0 0 | 387
404
394
420
400 | 1200
1100
1200
1100
1300 | 150
160
150
170
150 | | 88
88 | 340
360 | 4.3
4.5 | 8.3
8.0 | 490
510 | | 400
4 20 | 1300
1200 | 150
150 | | NITRO-
GEN,
AMMONIA,
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | PHOS-
PHORUS,
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C) | | | | | .04
.08
.08 | .45
.52
.61
 | .02
.00
.02
.05 | 120
460
270
300
250 | 2000
1500
1600
1700
1700 |

 | | | | | .02
.09
.04
.02
.00 | .43
.52
.58
.46
.22 | .01
.03
.05
.02 | 250
240
190
280
290 | 1600
1900
1400
1500
1700 |

 | | | | | .03
.01
.03
.00 | .63
.62
.59
.37
.48 | .04
.04
.01
.05 | 260
210
240
220
270 | 1400
1400
1700
1800
2100 |

6.8
4.6 | | | | | .00
.00
.00
.01 | .60
.90
.41
.60 | .01
.05
.04
.02 | 370
420
290
370 | 2200
2100
1800
1800
2000 |

 | | | | | .01
.01 | .99
.62 | .01
.03 | 440
340 | 2400
2100 | | | | | Table 5.--Water-level records and chemical [Well number 11 on figure 2. Local well number is SB00506423CCC1. | DATE OF
WATER-LEVEL
MEASUREMENT | WATER
LEVEL
(FEET
BELOW
LAND
SURFACE) | DATE
OF
SAMPLE | SPE-
CIFIC
CON-
DUCT-
ANCE
(MICRO-
MHOS) | PH
(UNITS) | TEMPER-
ATURE
(DEG C) | HARD-
NESS
(MG/L
AS
CACO3) | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | CALCIUM,
DIS-
SOLVED
(MG/L
AS CA) | |---
--|--|---|--|--|--|--|---| | 74-04-03
74-05-08
74-06-13
74-07-23
74-08-27 | 27.33
27.65
26.99
25.60
24.17 | 74-04-03
74-05-08
74-06-13
74-07-24
74-08-27 | 2370
2320
2370
2350
2270 | 7.2
7.3
7.4
7.3 | 11.5
12.5
12.5
13.5
12.5 | 890
870
890
860
850 | 560
540
570
540
540 | 200
190
200
190
190 | | 74-10-03
74-11-11
74-12-05
75-02-06
75-05-14 | 25.18
26.03
26.45
27.32
28.20 | 74-10-04
74-11-11
74-12-05
75-02-06
75-05-14 | 2310
2300
2500
2450
2900 | 7.4
7.0
7.1
7.1 | 12.0
12.0
12.0
11.5
12.5 | 860
850
880
870
910 | 550
530
560
550
600 | 190
200
200
190
200 | | 75-08-12
75-12-02
76-03-29
76-06-29
76-09-22 | 25.04
25.89
27.39
27.89
24.97 | 75-08-12
75-12-02
76-03-29
76-06-29
76-09-22 | 3100
2700
2200
2500
2200 | 7.2
7.5
7.5
6.5
7.1 | 13.5
13.0
12.0
13.0
12.5 | 910
850
910
890
940 | 590
520
590
560
59 0 | 200
190
200
190
210 | | 76-12-08
77-03-08
77-06-15
77-09-13
77-12-06 | 26.54
27.18
26.89
25.47
26.23 | 76-12-08
77-03-08
77-06-15
77-09-13
77-12-06 | 2300
2600
2600
2600
2400 | 7.4
7.6
7.3
7.4
7.3 | 12.0
13.0
13.0
13.0
12.0 | 890
910
940
960
980 | 550
570
590
600
590 | 200
200
210
220
210 | | 78-03-09
78-06-20 | 27.43
27.99 | 78-03-09
78-06-20 | 260 0
2500 | 7.3
7.7 | 13.0
13.5 | 1000
960 | 630
600 | 220
220 | | . 0- 00-20 | -7.655 | , 0 00 20 | | | | | | | | DATE OF
WATER-LEVEL
MEASUREMENT | WATER
LEVEL
(FEET
BELOW
LAND
SURFACE) | DATE
OF
SAMPLE | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | | DATE OF
WATER-LEVEL | WATER
LEVEL
(FEET
BELOW
LAND | DATE
OF | FLUO-
RIDE,
DIS-
SOLVED
(MG/L | DIS-
SOLVED
(MG/L
AS | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED | GEN,
NITRATE
DIS-
SOLVED
(MG/L | GEN,
NITRITE
DIS-
SOLVED
(MG/L | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L | | DATE OF
WATER-LEVEL
MEASUREMENT
74-04-03
74-05-08
74-06-13
74-07-23
74-08-27
74-10-03
74-11-11
74-12-05
75-02-06
75-05-14 | WATER
LEVEL
(FEET
BELOW
LAND
SURFACE)
27.33
27.65
26.99
25.60 | DATE
OF
SAMPLE
74-04-03
74-05-08
74-06-13
74-07-24 | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
1.9
1.9
3.4
1.8 | DIS-
SOLVED
(MG/L
AS
SIO2)
24
24
29
25 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
1710
1690
1680
1660 | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
7.8
8.3
7.5 | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
.12
.02
.01 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
7.9
8.3
7.5
8.1 | | DATE OF
WATER-LEVEL
MEASUREMENT
74-04-03
74-05-08
74-06-13
74-07-23
74-08-27
74-10-03
74-11-11
74-12-05
75-02-06 | WATER
LEVEL
(FEET
BELOW
LAND
SURFACE)
27.33
27.65
26.99
25.60
24.17
25.18
26.03
26.45
27.32 | DATE
OF
SAMPLE
74-04-03
74-05-08
74-06-13
74-07-24
74-08-27
74-10-04
74-11-11
74-12-05
75-02-06 | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
1.9
1.9
3.4
1.8
1.8
1.7
1.4
1.6
1.7 | DIS-
SOLVED
(MG/L
AS
SIO2)
24
24
29
25
25
25
25
24
25 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
1710
1690
1680
1660
1620
1650
1670
1640
1640 | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
7.8
8.3
7.5

7.0
7.9
9.0 | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
.12
.02
.01

.01 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
7.9
8.3
7.5
8.1
8.2
8.6
7.0
7.9
9.0 | | DATE OF WATER-LEVEL MEASUREMENT 74-04-03 74-05-08 74-06-13 74-08-27 74-10-03 74-11-11 74-12-05 75-02-06 75-05-14 75-08-12 75-12-02 76-03-29 76-06-29 | WATER
LEVEL
(FEET
BELOW
LAND
SURFACE)
27.33
27.65
26.99
25.60
24.17
25.18
26.03
26.45
27.32
28.20
25.04
25.89
27.39
27.89 | DATE
OF
SAMPLE
74-04-03
74-05-08
74-06-13
74-07-24
74-08-27
74-10-04
74-11-11
74-12-05
75-02-06
75-05-14
75-08-12
76-03-29
76-06-29 | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
1.9
1.9
3.4
1.8
1.7
1.4
1.6
1.7
1.8 | DIS-
SOLVED
(MG/L
AS
SIO2)
24
24
29
25
25
25
25
24
25
23
23
23
23
22 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
1710
1690
1680
1660
1620
1650
1670
1640
1640
1690
1760
1640 | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
7.8
8.3
7.5

7.0
7.9
9.0
8.7
7.9
7.2
7.4
7.7 | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
.12
.02
.01
.01
.00
.00
.00 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
7.9
8.3
7.5
8.1
8.2
8.6
7.0
7.9
9.0
8.7
7.9
7.2
7.4
7.7 | analyses of water from observation wells--Continued Depth is 78 ft. Interval open to the aquifer is 48 to 78 ft] | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | BICAR-
BONATE
(MG/L
AS
HCO3) | CAR-
BONATE
(MG/L
AS CO3) | ALKA-
LINITY
(MG/L
AS
CACO3) | SULFATE,
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | |---|--|--|---|--|--|--|--|---| | 96
95
96
94
92 | 230
230
220
230
220 | 3.3
3.4
3.2
3.4
3.3 | 6.7
6.2
6.4
6.3
7.6 | 404
394
390
394
387 | 0
0
0
 | 331
323
320
323
317 | 790
790
770
750
740 | 130
120
130
130
120 | | 94
84
92
95
99 | 210
220
210
210
220 | 3.1
3.3
3.1
3.1
3.2 | 7.0
4.4
6.1
6.7
5.7 | 383
379
384
390
377 |

0 | 314
311
315
320
309 | 780
800
760
750
780 | 120
120
120
130
140 | | 99
90
100
100
100 | 220
220
210
240
230 | 3.2
3.3
3.0
3.5
3.3 | 7.1
6.9
7.0
6.6
6.7 | 386
401
395
402
419 | 0
0
0
0 | 317
329
324
330
344 | 830
760
780
810
880 | 150
120
140
150
140 | | 96
100
100
100
110 | 230
230
230
240
220 | 3.3
3.3
3.4
3.1 | 6.6
6.4
6.5
6.5
6.6 | 421
412
420
440
470 | 0
0
0
0 | 345
338
344
360
390 | 830
830
820
860
800 | 140
96
150
150
120 | | 110
100 | 210
240 | 2.9
3.4 | 7.4
6.6 | 460
440 | 0 | 380
360 | 810
7 90 | 140
170 | | | | | | | | | | | | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | PHOS-
PHORUS,
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C) | | | | | GEN,
AMMONIA
DIS-
SOLVED
(MG/L | GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L |
PHORUS,
ORTHO,
DIS-
SOLVED
(MG/L | DIS-
SOLVED
(UG/L | NESE,
DIS-
SOLVED
(UG/L | ORGANIC
DIS-
SOLVED
(MG/L | | | | | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
.10
.07
.03 | GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
.66
.51
.69 | PHORUS,
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
.03
.04
.02
.05 | DIS-
SOLVED
(UG/L
AS FE)
50
30
10 | NESE,
DIS-
SOLVED
(UG/L
AS MN)
30
0
0 | ORGANIC
DIS-
SOLVED
(MG/L | | | | | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
.10
.07
.03

.03 | GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
.66
.51
.69

.56
.31
.56
.37 | PHORUS,
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
.03
.04
.02
.05
.07
.02 | DIS-
SOLVED
(UG/L
AS FE)
50
30
10
40
30
80
20
10
30 | NESE,
DIS-
SOLVED
(UG/L
AS MN)
30
0
0
0
0
0 | ORGANIC
DIS-
SOLVED
(MG/L
AS C) | | | | | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
.10
.07
.03

.03
.01
.01
.05
.01
.00
.00 | GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
.66
.51
.69

.56
.37
.46
.34
.38
.73
.80
.29 | PHORUS,
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
.03
.04
.02
.05
.07
.02
.03
.04
.09
.03
.04
.09
.03 | DIS-
SOLVED
(UG/L
AS FE)
50
30
10
40
30
80
20
10
30
30
20
10
30
30 | NESE,
DIS-
SOLVED
(UG/L
AS MN)
30
0
0
0
0
0
0
10
20
10 | ORGANIC
DIS-
SOLVED
(MG/L
AS C) | | | | $\label{thm:cal} \begin{tabular}{ll} Table 5.--Water-level records and chemical \\ [Well number 13 on figure 2. Local well number is SB00506423DCB1. \\ \end{tabular}$ | | WATER | J | SPE- | | | | MADD | | |--|--|--|--|---|--------------------------------------|---|--|---| | DATE OF
WATER-LEVEL
MEASUREMENT | LEVEL
(FEET
BELOW
LAND
SURFACE) | DATE
OF
SAMPLE | CIFIC
CON-
DUCT-
ANCE
(MICRO-
MHOS) | PH
(UNITS) | TEMPER-
ATURE
(DEG C) | HARD-
NESS
(MG/L
AS
CACO3) | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | CALCIUM,
DIS-
SOLVED
(MG/L
AS CA) | | 73-12-14
74-04-03
74-05-08
74-06-13
74-07-23 | 36.80
37.58
38.34
38.48
38.52 | 74-04-03
74-05-08
74-06-13
74-07-23 | 2290
2390
2380
2390 | 7.4
7.4
7.5
7.4 | 12.5
13.5
14.0
14.5 | 930
930
900
930 | 660
650
630
660 | 220
220
210
220 | | 74-08-27
74-10-03
74-11-11
74-12-05
75-02-06 | 38.54
38.13
37.78
37.86
37.49 | 74-08-27
74-10-03
74-11-11
74-12-05
75-02-06 | 2390
2390
2400
2400
2500 | 7.2
7.1
7.2 | 13.5
13.5
13.0
13.0
13.0 | 920
920
850
920
910 | 640
630
580
640
630 | 220
220
220
210
210 | | 75-05-14
75-08-11
75-12-01
76-03-29
76-06-29 | 38.15
38.77
38.54
38.23
38.85 | 75-05-14
75-08-11
75-12-01
76-03-29
76-06-29 | 2900
3000
2650
2250
2300 | 7.3
7.3
7.1
7.6
7.1 | 13.5
14.5
13.0
12.0
13.5 | 900
900
920
910
900 | 630
64 0
650
640
630 | 220
210
220
220
210 | | 76-09-22
76-12-08
77-03-08
77-06-15
77-09-13 | 39.41
37.64
38.07
39.09
38.40 | 76-09-22
76-12-08
77-03-08
77-06-15
77-09-12 | 2200
2200
2300
2370
2000 | 7.2
7.3
7.5
7.4
7.3 | 13.5
12.5
13.0
13.5
13.5 | 920
890
890
890
910 | 660
630
620
620
640 | 220
210
210
210
210
210 | | 77-12-06
78-03-09
78-06-20 | 37.71
37.85
38.90 | 77 - 12 - 06
78 - 03 - 09
78 - 06 - 20 | 2200
2300
2300 | 7.2
7.2
7.3 | 12.5
13.0
13.5 | 940
940
910 | 670
660
630 | 220
220
200 | | DATE OF
WATER-LEVEL
MEASUREMENT | WATER
LEVEL
(FEET
BELOW
LAND
SURFACE) | DATE
OF
SAMPLE | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | CONSTI-
TUENTS,
DIS-
SOLVED | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N) | GEN,
NITRITE
DIS- | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | | 73-12-14
74-04-03
74-05-08
74-06-13
74-07-23 | 36.80
37.58
38.34
38.48
38.52 | 74-04-03
74-05-08
74-06-13
74-07-23 | 1.2
1.2
1.1
1.2 | 20
21
25
21 | 1690
1760
1680
1740 | 4.7
5.0
4.6 | .01
.00
.00 | 4.7
5.0
4.6
5.0 | | 74-08-27
74-10-03
74-11-11
74-12-05
75-02-06 | 38.54
38.13
37.78
37.86
37.49 | 74-08-27
74-10-03
74-11-11
74-12-05
75-02-06 | 1.3
1.2
1.0
1.2
1.1 | 21
22
21
21
21 | 1690
1730
1660
1700
1760 | 5.2
4.8
5.0 | .01
.01
.00
.00 | 4.1
5.0
5.2
4.8
5.0 | | 75-05-14
75-08-11
75-12-01
76-03-29
76-06-29 | 38.15
38.77
38.54
38.23
38.85 | 75-05-14
75-08-11
75-12-01
76-03-29
76-06-29 | 1.1
1.0
1.1
1.1 | 20
20
20
20
20
19 | 1690
1750
1740
1670
1770 | 4.9
4.9
4.7

4.9 | .00
.01
.01
 | 4.9
4.9
4.7
5.1
4.9 | | 76-09-22
76-12-08
77-03-08
77-06-15
77-09-13 | 39.41
37.64
38.07
39.09
38.40 | 76-09-22
76-12-08
77-03-08
77-06-15
77-09-12 | 1.1
1.1
1.2
1.2
1.2 | 20
20
21
20
22 | 1750
1700
1700
1690
1710 | 4.9
4.8
4.7
5.3
5.0 | .01
.00
.01
.00 | 4.9
4.8
4.7
5.3
5.0 | | 77-12-06
78-03-09
78-06-20 | 37.71
37.85
38.90 | 77-12-06
78-03-09
78-06-20 | 1.2
1.3
1.6 | 21
19
18 | 17 40
1720
1710 | 6.0
5.5
7.8 | .01
.00
.02 | 6.0
5.5
7.8 | analyses of water from observation wells--Continued Depth is 122 ft. Interval open to the aquifer is 118 to 122 ft] | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | BICAR-
BONATE
(MG/L
AS
HCO3) | CAR-
BONATE
(MG/L
AS CO3) | ALKA-
LINITY
(MG/L
AS
CACO3) | SULFATE,
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | |---|---|--|---|--|--|--|--|---| | 92
92
92
92
93 | 210
210
210
210
220 | 3.0
3.0
3.0
3.1 | 5.2
5.6
5.3
5.4 | 329
334
332
338 | 0
0
0 | 270
274
272
277 | 820
870
810
840 | 140
150
140
150 | | 91
90
74
95
93 | 210
210
230
210
210 | 3.0
3.0
3.4
3.0
3.0 | 6.7
6.1
3.5
5.1
5.6 | 344
349
333
340
335 |

 | 282
286
273
279
275 | 810
840
780
830
870 | 140
150
140
140
160 | | 85
92
90
88
90 | 220
220
230
200
230 | 3.2
3.2
3.3
2.9
3.3 | 5.1
6.0
5.7
5.7
5.5 | 327
327
331
337
328 | 0
0
0
0 | 268
268
271
276
269 | 810
870
850
810
880 | 150
150
140
140
150 | | 90
89
88
89
93 | 220
220
220
220
220
220 | 3.2
3.2
3.2
3.2
3.2 | 5.5
5.5
5.5
5.3
5.1 | 323
319
324
330
330 | 0
0
0
0 | 265
262
266
270
270 | 870
830
820
820
820 | 140
150
150
140
150 | | 94
94
99 | 220
210
220 | 3.1
3.0
3.2 | 5.3
5.8
6.0 | 330
340
340 | 0
0
0 | 270
280
280 | 840
830
840 | 150
150
120 | | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | PHOS-
PHORUS,
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C) | | | | | .01
.02
.02 | .43
.47
.54 | .02
.01
.02 | 40
20
0
20 | 0
20
10
0 |

 | | | | | .03
.04
.04
.08
.01 | .45
.45
.61
.40 | .06
.03
.01
.03 | 50
80
30
10
10 | 0
30
0
0 |

 | | | | | .00
.00
.00 | .25
.47
.73
 | .04
.03
.04
.01 | 20
10
60
10
80 | 5
0
5
10
0 |

4.5 | | | | | .00
.00
.00
.00 | .26
.77
.40
.47 | .05
.01
.04
.03 | 10
30
70
90
70 | 10
0
20
0 | 4.7 | | | | | .01
.00
.00 | .48
.55
.92 | .01
.01
.02 | 60
120
160 | 0
0
10 | | | | | Table 5.--Water-level records and chemical
[Well number 14 on figure 2. Local well number is SB00506423DCB2. | DATE OF
WATER-LEVEL
MEASUREMENT | WATER
LEVEL
(FEET
BELOW
LAND
SURFACE) | DATE
OF
SAMPLE | SPE-
CIFIC
CON-
DUCT-
ANCE
(MICRO-
MHOS) | PH
(UNITS) | TEMPER-
ATURE
(DEG C) | HARD-
NESS
(MG/L
AS
CACO3) | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | CALCIUM,
DIS-
SOLVED
(MG/L
AS CA) | |--|--|--|--|---|---|---|--|---| | 73-12-15
74-04-03
74-05-08
74-06-13
74-07-23 | 36.30
36.69
36.97
37.11
36.82 | 74-04-03
74-05-08
74-06-13
74-07-23 | 2540
2520
2520
2520
2540 | 7.4
7.4
7.4
7.2 | 12.5
13.5
13.5
14.5 | 960
1000
960
1000 | 640
680
640
680 | 220
220
220
220
220 | | 74-08-27
74-10-03
74-11-11
74-12-05
75-02-06 | 36.50
36.19
36.26
36.41
36.86 | 74-08-27
74-10-03
74-11-11
74-12-05
75-02-06 | 2530
2510
2400
2500
2600 | 7.3
7.1
7.2 | 13.0
14.0
12.5
13.0
12.5 | 980
990
840
910
940 | 660
670
530
590
610 | 210
230
210
200
210 | | 75-05-14
75-08-11
75-12-01
76-03-29
76-06-29 | 37.32
37.01
36.14
37.12
37.52 | 75-05-14
75-08-11
75-12-01
76-03-29
76-06-29 | 2900
3100
2650

2500 | 7.4
7.2
7.2
7.1 | 13.0
14.0
12.5
 | 940
890
880
880
910 | 620
570
560
560
600 | 210
200
200
200
200 | | 76-09-22
76-12-08
77-03-08
77-06-15
77-09-13 | 36.48
36.38
37.06
37.65
37.17 | 76-09-22
76-12-08
77-03-08
77-06-15
77-09-13 | 2200
2200
2400
2450
2400 | 7.2
7.3
7.3
7.3
7.3 | 13.0
12.5
13.0
13.0
13.0 | 900
910
890
940
940 | 580
590
570
620
600 | 200
200
200
210
210 | | 77-12-06
78-03-09
78-06-20 | 35.93
36.98
37.33 | 77-12-06
78-03-09
78-06-20 | 2400
2400
2400 | 7.2
7.2
7.4 | 12.0
12.5
13.0 | 940
980
980 | 590
810
640 | 210
210
210 | | DATE OF
WATER-LEVEL
MEASUREMENT | WATER
LEVEL
(FEET
BELOW
LAND
SURFACE) | DATE
OF
SAMPLE | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N) | GEN,
NITRITE
DIS- | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | | 73-12-15
74-04-03
74-05-08
74-06-13
74-07-23 | 36.30
36.69
36.97
37.11
36.82 | 74-04-03
74-05-08
74-06-13
74-07-23 | 1.7
1.4
1.5
1.6 | 24
25
28
24 | 1820
1880
1810
1860 | 8.8
8.8
8.8 | .00
.00
.01 | 8.8
8.8
8.8
8.2 | | 74-08-27
74-10-03
74-11-11
74-12-05
75-02-06 | 36.50
36.19
36.26
36.41
36.86 | 74-08-27
74-10-03
74-11-11
74-12-05
75-02-06 | 1.5
1.5
1.4
1.5
1.4 | 24
25
24
23
24 | 1910
1840
1700
1770
1830 | 10
9.0
9.6 | .01
.01
.00
.00 | 8.2
8.6
10
9.0
9.6 | | 75-05-14
75-08-11
75-12-01
76-03-29
76-06-29 | 37.32
37.01
36.14
37.12
37.52 | 75-05-14
75-08-11
75-12-01
76-03-29
76-06-29 | 1.6
1.4
1.5
1.4
1.6 | 23
23
23
23
22 | 1780
1770
1740
1650
1820 | 10
8.9
9.8
11
9.6 | .00
.01
.01
.00 | 10
8.9
9.8
11
9.6 | | 76-09-22
76-12-08
77-03-08
77-06-15
77-09-13 | 36.48
36.38
37.06
37.65
37.17 | 76-09-22
76-12-08
77-03-08
77-06-15
77-09-13 | 1.5
1.6
1.6 | 23
22
24
22
25 | 1830
1800
1760
1780
1800 | 10
13
9.5
9.1
9.9 | .01
.00
.01
.00 | 10
13
9.5
9.1
9.9 | | 77-12-06
78-03-09
78-06-20 | 35.93
36.98
37.33 | 77-12-06
78-03-09
78-06-20 | 1.6 | 25
22
19 | 1800
1690
1820 | 11
10
9.0 | .01
.02
.01 | 11
10
9.0 | ## analyses of water from observation wells--Continued Depth is 77 ft. Interval open to the aquifer is 73 to 77 ft] | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | BICAR- | CAR-
BONATE
(MG/L
AS CO3) | ALKA-
LINITY
(MG/L
AS
CACO3) | SULFATE,
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | |---|---|--|---|--|--|--|--|---| | 100
110
100
110 | 230
220
230
240 | 3.2
3.0
3.2
3.3 | 7.0
7.4
6.6
6.5 | 395
391
386
388 | 0
0
0 | 324
321
317
318 | 860
910
850
880 | 140
150
140
150 | | 110
100
77
100
100 | 240
230
250
240
230 | 3.3
3.2
3.8
3.5
3.3 | 9.0
7.8
4.7
6.3
6.9 | 383
385
382
387
394 |

 | 314
316
313
317
323 | 940
880
770
830
870 | 150
140
130
140
150 | | 100
95
92
92
100 | 240
230
240
220
250 | 3.4
3.4
3.5
3.2
3.6 | 6.7
7.5
7.3
7.6
7.2 | 391
385
390
389
383 | 0
0
0
 | 321
316
320
319
314 | 810
840
810
730
860 | 150
140
130
140
150 | | 98
100
96
100
100 | 240
230
240
230
240 | 3.5
3.3
3.5
3.3 | 7.2
7.1
6.9
6.9
6.6 | 388
392
395
390
410 | 0
0
0
0 | 318
322
324
320
340 | 880
850
800
830
820 | 140
140
150
150
150 | | 100
110
110 | 240
230
240 | 3.4
3.2
3.3 | 7.2
7.5
7.1 | 420
210
410 | 0
0
0 | 340
170
340 | 820
810
840 | 140
150
150 | | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | PHOS-
PHORUS,
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C) | | | | | .02
.02
.02 | .39
.58
.76 | .04
.03
.02 | 280
10
30
20 | 20
20
0
0 |

 | | | | | .03
.04
.02
.03 | .62
.41
.62
.43 | .08
.05
.04
.05
.03 | 400
30
20
10
10 | 0
10
0
10
10 |

 | | | | | .00
.00
.01
.02 | .04
.47
.78
.65
.55 | .06
.04
.06
.03 | 20
10
40
30
60 | 10
10
0
10
0 | 4.3 | | | | | .00
.00
.00
.00 | .46
.65
.48
.52 | .04
.03
.06
.04
.05 | 60
50
100
150
110 | 10
0
10
0
10 | 3.4

 | | | | | .00
.00
.01 | .31
.70
1.6 | .03
.02
.04 | 150
110
80 | 8
0
10 | | | | | Table 5.--Water-level records and chemical [Well number 15 on figure 2. Local well number is SB00506423DCB3. | DATE OF
WATER-LEVEL
MEASUREMENT | WATER
LEVEL
(FEET
BELOW
LAND
SURFACE) | DATE
OF
SAMPLE | SPE-
CIFIC
CON-
DUCT-
ANCE
(MICRO-
MHOS) | PH
(UNITS) | TEMPER-
ATURE
(DEG C) | HARD-
NESS
(MG/L
AS
CACO3) | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | CALCIUM,
DIS-
SOLVED
(MG/L
AS CA) | |--|--|--|--|---|---|---|---|---| | 74-04-03

74-06-13
74-07-23
74-08-27 | 36.16

36.43
36.32
35.89 | 74-04-03
74-05-08
74-06-13
74-07-23
74-08-27 | 2290
2290
2320
2330
2370 | 7.3
7.4
7.4
7.3 | 13.0
13.5
13.5
14.0
13.0 | 900
900
870
900
910 | 580
570
540
570
580 | 220
220
210
220
220 | | 74-10-03
74-11-11
74-12-05
75-02-06
75-05-14 | 35.53
35.57
35.75
36.18
36.74 | 74-10-03
74-11-11
74-12-05
75-02-06
75-05-14 | 2400
2400
2400
2500
2800 | 7.4
6.9
7.1
7.2 | 13.0
12.5
13.0
12.5
13.0 | 940
890
940
920
900 | 610
560
590
570
520 | 230
230
230
220
220 | | 75-08-11
75-12-01
76-03-29
76-06-29
76-09-22 | 36.36
35.64
36.54
37.13
36.70 | 75-08-11
75-12-01
76-03-29
76-06-29
76-09-22 | 3000
2650
2150
2400
2100 |
7.1
7.0
7.5
7.1
7.1 | 14.0
12.5
12.0
13.0
13.0 | 910
920
900
880
920 | 530
520
520
520
530 | 220
230
220
210
220 | | 76-12-08
77-03-08
77-06-15
77-09-13
77-12-06 | 35.76
36.41
37.70
36.84
36.16 | 76-12-08
77-03-08
77-06-15
77-09-12
77-12-06 | 2100
2200
2500
2300
2200 | 6.8
7.2
6.9
7.1
6.9 | 12.5
13.0
13.5
13.0
12.0 | 910
900
920
970
930 | 550
500
550
560
560 | 220
220
220
230
220 | | 78-03-09
78-06-20 | 36.35
36.68 | 78-03-08
78-06-20 | 2400
2300 | 6.8
7.0 | 13.0
13.0 | 960
890 | 890
5 10 | 230
200 | | DATE OF
WATER-LEVEL
MEASUREMENT | WATER
LEVEL
(FEET
BELOW
LAND
SURFACE) | DATE
OF
SAMPLE | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | | 74-04-03

74-06-13
74-07-23
74-08-27 | 36.16

36.43
36.32
35.89 | 74-04-03
74-05-08
74-06-13
74-07-23
74-08-27 | 1.8
2.2
2.6
2.0
2.0 | 26
26
30
26
26 | 1740
1710
1650
1730
1740 | 8.0
8.6
8.8

8.7 | .00
.00
.00
 | 8.0
8.6
8.8
9.8
8.7 | | 74-10-03
74-11-11
74-12-05
75-02-06
75-05-14 | 35.53
35.57
35.75
36.18
36.74 | 74-10-03
74-11-11
74-12-05
75-02-06
75-05-14 | 1.9
2.0
2.0
1.9
2.0 | 26
26
25
26
25 | 1790
1760
1740
1800
1700 | 11
9.7
10
13 | .01
.00
.00
.01 | 9.7
11
9.7
10
13 | | 75-08-11
75-12-01
76-03-29
76-06-29
76-09-22 | 36.36
35.64
36.54
37.13
36.70 | 75-08-11
75-12-01
76-03-29
76-06-29
76-09-22 | 1.7
1.5
1.5
1.5 | 26
26
27
26
26 | 1710
1800
1670
1760
1800 | 9.8
10
10
8.8
7.7 | .01
.01
.00
.00 | 9.8
10
10
8.8
7.7 | | 76-12-08
77-03-08
77-06-15
77-09-13
77-12-06 | 35.76
36.41
37.70
36.84
36.16 | 76-12-08
77-03-08
77-06-15
77-09-12
77-12-06 | 1.2
1.4
1.5
1.5 | 29
29
28
31
29 | 1750
1730
1740
1770
1750 | 10
7.5
8.5
8.6
10 | .00
.01
.00
.00 | 10
7.5
8.5
8.6
10 | | 78-03-09
78-06-20 | 36.35
36.68 | 78-03-08
78-06-20 | 1.4
1.5 | 28
24 | 1600
1700 | 11
8.0 | .00
.02 | 11
8.0 | analyses of water from observation wells--Continued Depth is 42 ft. Interval open to the aquifer is 40 to 42 ft] | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SGDIUM,
DIS-
SOLVED
(MG/L
AS NA) | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | BICAR-
BONATE
(MG/L
AS
HCO3) | CAR-
BONATE
(MG/L
AS CO3) | ALKA-
LINITY
(MG/L
AS
CACO3) | SULFATE,
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | |---|---|--|---|--|--|--|--|---| | 86
84
84
86
87 | 210
200
210
220
220 | 3.0
2.9
3.1
3.2
3.2 | 6.3
6.8
6.4
5.6
8.2 | 391
397
398
405
404 | 0
0
0
 | 321
326
326
332
331 | 880
840
780
830
840 | 86
95
88
94
96 | | 88
77
88
91
84 | 210
230
220
220
220 | 3.0
3.4
3.1
3.2
3.2 | 7.5
4.7
6.2
6.8
6.4 | 397
408
419
427
457 |

0 | 326
335
344
350
375 | 900
860
830
880
770 | 90
82
85
97
94 | | 87
84
86
87
89 | 210
230
210
230
230 | 3.0
3.3
3.0
3.4
3.2 | 7.2
6.9
7.6
6.9
7.0 | 457
485
470
446
466 | 0
0
0
0 | 375
398
386
366
382 | 800
860
760
850
880 | 87
80
80
87
90 | | 87
85
89
97
93 | 220
230
230
220
220 | 3.2
3.3
3.3
3.1
3.1 | 6.9
6.8
6.5
6.5 | 439
491
450
510
450 | 0
0
0
0 | 360
403
369
420
370 | 830
790
810
800
820 | 94
96
94
92
95 | | 94
94 | 210
220 | 2.9
3.2 | 7.4
6.8 | 91
460 | 0 | 75
380 | 830
790 | 110
100 | | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | PHOS-
PHORUS,
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C) | | | | | .02
.03
.02
 | .33
.53
.75
 | .04
.01
.02
.08
.07 | 30
10
20
20
30 | 0
0
0
0 |

 | | | | | .03
.01
.03
.01 | .37
.54
.37
.49 | .03
.03
.05
.03 | 50
20
50
30
90 | 0
0
0
0
10 |

 | | | | | .00
.01
.03
.00 | .30
1.1
.49
.42
.68 | .04
.06
.03
.06 | 280
70
80
130
100 | 0
0
0
0
10 | 3.9
3.6 | | | | | .10
.01
.00
.00 | .47
1.5
.64
.40
.21 | .02
.06
.04
.04 | 70
130
130
170
110 | 0
10
10
10
8 |

 | | | | | .00
.01 | .74
1.5 | .01
.03 | 110
180 | 10
5 | | | | | $\label{thm:cal} \textbf{Table 5.--Water-level records and chemical} \\ \textbf{[Well number 16 on figure 2. Local well number is $SB00506423DCB4.} \\ \\ \textbf{(SB00506423DCB4.)} \textbf{(SB00506423DCB4.)}$ | DATE OF
WATER-LEVEL
MEASUREMENT | WATER
LEVEL
(FEET
BELOW
LAND
SURFACE) | DATE
OF
SAMPLE | SPE-
CIFIC
CON-
DUCT-
ANCE
(MICRO-
MHOS) | PH
(UNITS) | TEMPER-
ATURE
(DEG C) | HARD-
NESS
(MG/L
AS
CACO3) | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | CALCIUM,
DIS-
SOLVED
(MG/L
AS CA) | |--|--|--|--|---|---|---|---|---| | 74-05-08
74-06-13
74-07-23
74-08-27 | 36.50
36.68
36.60
36.08 | 74-04-03
74-05-08
74-06-13
74-07-23
74-08-27 | 2480
2440
2460
2470
2460 | 7.3
7.3
7.4
7.3 | 12.5
13.5
13.5
14.0
13.0 | 990
990
990
960
980 | 650
650
650
620
640 | 230
230
230
220
210 | | 74-10-03
74-11-11
74-12-05
75-02-06
75-05-14 | 35.68
35.79
35.94
36.40
36.94 | 74-10-03
74-11-11
74-12-05
75-02-06
75-05-14 | 2440
2420
2600
2600
3100 | 7.3
7.0
7.1
7.2 | 13.0
12.5
13.0
12.0
13.0 | 960
950
990
1000
970 | 630
620
650
650
630 | 220
230
230
240
230 | | 75-08-11
75-12-01
76-03-29
76-06-29
76-09-22 | 36.56
35.68
36.66
37.05
36.01 | 75-08-11
75-12-01
76-03-29
76-06-29
76-09-22 | 3100
2650
2200
2400
2200 | 7.2
7.0
7.6
7.0
7.2 | 14.0
13.0
12.0
13.0
13.0 | 940
940
900
940
930 | 600
610
560
620
600 | 210
220
200
220
210 | | 76-12-06
77-03-08
77-06-15
77-09-13
77-12-06 | 35.40
36.56
36.20
36.79
35.40 | 76-12-08
77-03-08
77-06-15
77-09-12
77-12-06 | 2200
2300
2280
2200
2200 | 7.3
7.2
7.5
7.4
7.1 | 12.0
13.0
13.5
13.0
12.0 | 920
910
880
920
920 | 590
580
560
580
580 | 210
210
200
210
210 | | 78-03-09
78-06-20 | 36.45
36.88 | 78-03-09
78-06-20 | 2200
2300 | 7.1
7.3 | 13.0
13.0 | 930
900 | 890
570 | 210
200 | | DATE OF
WATER-LEVEL
MEASUREMENT | WATER
LEVEL
(FEET
BELOW
LAND
SURFACE) | DATE
OF
SAMPLE | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | | 74-05-08
74-06-13
74-07-23
74-08-27 | 36.50
36.68
36.60
36.08 | 74-04-03
74-05-08
74-06-13
74-07-23
74-08-27 | 1.8
2.0
2.3
1.9 | 23
23
28
24
24 | 1800
1830
1840
1800
1780 | 8.6
8.6
7.5
 | .01
.00
.00
 | 8.6
8.6
7.5
9.0
9.3 | | 74-10-03
74-11-11
74-12-05
75-02-06
75-05-14 | 35.68
35.79
35.94
36.40
36.94 | 74-10-03
74-11-11
74-12-05
75-02-06
75-05-14 | 1.8
1.5
1.8
1.7
1.9 | 24
24
23
24
23 | 1810
1800
1800
2290
1790 | 9.4
10
9.2
10 | .01
.01
.00
.00 | 9.4
10
9.2
10 | |
75-08-11
75-12-01
76-03-29
76-06-29
76-09-22 | 36.56
35.68
36.66
37.05
36.01 | 75-08-11
75-12-01
76-03-29
76-06-29
76-09-22 | 1.7
1.8
1.8
1.9 | 23
22
22
22
22 | 1830
1840
1740
1820
1810 | 9.8
9.4
10
10 | .00
.01
.00
.00 | 9.8
9.4
10
10 | | 76-12-06
77-03-08
77-06-15
77-09-13
77-12-06 | 35.40
36.56
36.20
36.79
35.40 | 76-12-08
77-03-08
77-06-15
77-09-12
77-12-06 | 1.9
1.9
1.9
1.9 | 22
24
22
2 4
23 | 1800
1750
1690
1720
1720 | 14
9.8
9.7
9.8
11 | .00
.00
.00
.00 | 14
9.8
9.7
9.8
11 | | 78-03-09
78-06-20 | 36.45
36.88 | 78-03-09
78-06-20 | 1.1
1.9 | 21
19 | 1530
1670 | 11
9.2 | .00
.02 | 11
9.2 | analyses of water from observation wells--Continued Depth is 60 ft. Interval open to the aquifer is 56 to 60 ft] | MAGNE-
SIUM, | SODIUM, | SCDIUM | POTAS-
SIUM, | BICAR- | | ALKA- | SULFATE, | CHLO-
RIDE, | |---|---|--|--|--|--|---------------------------------|------------------------------------|---------------------------------| | DIS-
SOLVED
(MG/L
AS MG) | DIS-
SOLVED
(MG/L
AS NA) | AD-
SORP-
TION
RATIO | DIS-
SOLVED
(MG/L
AS K) | BONATE
(MG/L
AS
HCO3) | CAR-
BONATE
(MG/L
AS CO3) | LINITY
(MG/L
AS
CACO3) | DIS-
SOLVED
(MG/L
AS SO4) | DIS-
SOLVED
(MG/L | | 100
100
100
100
110 | 220
210
220
220
210 | 3.1
2.9
3.1
3.1
2.9 | 6.9
6.3
5.8
5.3
7.2 | 411
411
409
410
408 | 0
0
0
 | 337
337
335
336
335 | 870
910
910
880
850 | AS CL) 110 110 110 110 120 | | 100
91
100
100
95 | 220
220
220
350
220 | 3.1
3.1
3.1
4.8
3.1 | 6.8
3.3
5.8
6.4
5.8 | 409
407
409
445
409 |

0 | 336
334
335
365
335 | 880
880
860
1200
860 | 110
110
120
100
110 | | 100
95
97
96
99 | 220
230
210
230
220 | 3.1
3.3
3.0
3.3
3.1 | 6.6
6.5
6.7
6.3
6.2 | 406
398
402
402
401 | 0
0
0
0 | 333
326
335
330
329 | 900
910
850
880
900 | 120
120
110
120
110 | | 96
94
93
96
96 | 220
220
220
220
220
220 | 3.2
3.2
3.2
3.2
3.2 | 6.3
6.0
5.9
5.6
6.3 | 399
401
390
410
410 | 0
0
0
0 | 327
329
320
340
340 | 860
840
800
810
800 | 120
110
110
110
110 | | 98
98 | 210
220 | 3.0
3.2 | 6.3
6.0 | 48
410 | 0
0 | 39
340 | 800
760 | 110
120 | | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | PHOS-
PHORUS,
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C) | | | | | .02
.03
.03
 | .58
.59
.63
 | .04
.01
.01
.08
.06 | 100
10
20
20
20 | 0
10
0
0
20 | | | | | | .03
.03
.04
.01 | .43
.57
.42
.52 | .04
.04
.04
.03 | 20
10
20
40
20 | 30
0
0
150
10 |

 | | | | | .00
.04
.02
.00 | .67
.99
.48
.42
.52 | .06
.05
.04
.06 | 10
40
10
20
10 | 0
5
0
0
10 | 3.7
5.1 | | | | | .06
.00
.00 | .53
.84
.35
.00 | .03
.06
.05
.04 | 20
30
20
20 | 0
0
0 |
 | | | | | .06
.00 | 1.4
.72 | .02
.42 | 50 | 4 | | | | | Table 5.--Water-level records and chemical [Well number 18 on figure 2. Local well number is SB00506424CCA1. | DATE OF
WATER-LEVEL
MEASUREMENT | WATER
LEVEL
(FEET
BELOW
LAND
SURFACE) | DATE
OF
SAMPLE | SPE-
CIFIC
CON-
DUCT-
ANCE
(MICRO-
MHOS) | PH
(UNITS) | TEMPER-
ATURE
(DEG C) | HARD-
NESS
(MG/L
AS
CACO3) | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | CALCIUM,
DIS-
SOLVED
(MG/L
AS CA) | |--|--|--|--|---------------------------------|---|---|--|---| | 74-03-25
74-04-04
74-05-08
74-06-14
74-07-23 | 32.50
32.60
32.98
33.09
33.30 | 74-04-04
74-05-09
74-06-14
74-07-24 | 2240
2240
2200
2210 | 6.9
7.3
7.4
7.5 | 13.0
13.5
14.0
14.5 | 830
790
820
820 | 500
490
520
520 | 210
200
210
210 | | 74-08-27
74-10-03
74-11-11
74-12-05
75-02-06 | 33.23
32.90
32.73
32.81
33.05 | 74-08-28
74-10-03
74-11-11
74-12-05
75-02-06 | 2200
2200
2300
2400
2400 | 7.2
7.2
7.1 | 14.0
13.5
13.5
13.0
13.0 | 800
840
820
830
820 | 500
540
530
530
520 | 200
220
220
210
210 | | 75-05-14
75-08-12
75-12-02
76-03-29
76-06-29 | 33.38
33.50
32.60
33.05
33.59 | 75-05-14
75-08-12
75-12-02
76-03-29
76-06-29 | 2800
2600
2700
2200
2200 | 7.2
7.5
7.4
7.6
6.8 | 14.0
14.0
13.5
13.0
14.0 | 840
880
820
810
850 | 550
580
520
510
540 | 210
230
210
210
220 | | 76-09-22
76-12-08
77-03-08
77-06-15
77-09-13 | 32.97
32.74
33.08
33.85
33.83 | 76-09-22
76-12-08
77-03-08
77-06-15
77-09-13 | 2100
2100
2200
2400
2200 | 7.3
7.4
7.5
7.3
7.4 | 13.5
13.5
13.5
14.0
14.0 | 830
830
820
840
830 | 520
530
520
530
520 | 210
210
210
210
210
210 | | 77-12-06
78-03-09
78-06-20 | 32.99
33.10
33.18 | 77-12-06
78-03-09
78-06-20 | 2200
2250
2200 | 7.3
7.3
7.3 | 12.5
13.0
14.0 | 830
830
830 | 510
530
530 | 210
210
210 | | DATE OF
WATER-LEVEL
MEASUREMENT | WATER
LEVEL
(FEET
BELOW
LAND
SURFACE) | DATE
OF
SAMPLE | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | AS | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N) | GEN,
NITRITE
DIS- | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | | 74-03-25
74-04-04
74-05-08
74-06-14
74-07-23 | 32.50
32.60
32.98
33.09
33.30 | 74-04-04
74-05-09
74-06-14
74-07-24 | 1.1
1.2
1.1 | 18
17
17
18 | 1590
1610
1640
1610 | 3.4
4.0
5.3 | .18
.04
.05 | 3.6
4.0
5.3
5.0 | | 74-08-27
74-10-03
74-11-11
74-12-05
75-02-06 | 33.23
32.90
32.73
32.81
33.05 | 74-08-28
74-10-03
74-11-11
74-12-05
75-02-06 | 1.1
1.0
1.2 | 17
18
17
17
18 | 1580
1640
1570
1590
1650 | 5.6
5.1
5.7 | .00
.02
.01
.01 | 4.6
5.1
5.6
5.1
5.7 | | 75-05-14
75-08-12
75-12-02
76-03-29
76-06-29 | 33.38
33.50
32.60
33.05
33.59 | 75-05-14
75-08-12
75-12-02
76-03-29
76-06-29 | 1.1
.8
1.1
1.2 | 17
17
11
16
16 | 1640
1660
1640
1620
1710 | 5.5
4.9
3.6
6.0
5.9 | .01
.01
.00
.00 | 5.5
4.9
3.6
6.0
5.9 | | 76-09-22
76-12-08
77-03-08
77-06-15
77-09-13 | 32.97
32.74
33.08
33.85
33.83 | 76-09-22
76-12-08
77-03-08
77-06-15
77-09-13 | 3 1.1
3 1.3
5 1.3 | 16
16
18
16
18 | 1630
1680
1630
1630
1650 | 6.5
8.3
6.3
6.0
6.5 | .01
.00
.01
.00 | 6.5
8.3
6.3
6.0
6.5 | | 77-12-06
78-03-09
78-06-20 | 32.99
33.10
33.18 | 77-12-06
78-03-09
78-06-20 | 1.2 | 18
16
14 | 1630
1570
1610 | 7.9
7.1
6.6 | .01
.00
.02 | 7.9
7.1
6.6 | analyses of water from observation wells--Continued Depth is 113 ft. Interval open to the aquifer is 109 to 113 ft] | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | BICAR-
BONATE
(MG/L
AS
HCO3) | CAR-
BONATE
(MG/L
AS CO3) | ALKA-
LINITY
(MG/L
AS
CACO3) | SULFATE,
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | |---|---|--|---|--|--|--|--|---| | 74
71
71
72 | 210
210
220
220 | 3.2
3.2
3.4
3.3 | 6.7
5.3
4.9
4.5 | 400
372
359
361 | 0
0
0 | 328
305
294
296 | 770
810
830
790 |
89
97
86
93 | | 73
71
66
74
72 | 220
210
210
210
210 | 3.4
3.2
3.2
3.2
3.2 | 6.3
5.5
3.5
4.6
5.1 | 361
363
361
363
364 |

 | 296
298
296
298
299 | 770
820
760
780
830 | 93
89
94
87
100 | | 77
73
71
70
72 | 210
210
230
210
230 | 3.2
3.1
3.5
3.2
3.4 | 5.7
5.7
5.4
5.4
5.4 | 352
361
359
370
368 | 0
0
0
0 | 289
296
294
303
302 | 830
830
820
810
870 | 88
94
100
91
86 | | 73
75
72
76
75 | 220
220
220
220
220
220 | 3.3
3.3
3.3
3.3 | 5.5
5.4
5.4
5.3
5.0 | 366
364
367
370
380 | 0
0
0
0 | 300
299
301
303
310 | 800
850
800
810
820 | 90
91
90
86
87 | | 73
74
75 | 220
190
220 | 3.3
2.9
3.3 | 5.2
5.4
5.3 | 380
370
370 | 0
0
0 | 310
300
300 | 800
780
780 | 82
83
89 | | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | PHOS-
PHORUS,
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | IRON, DIS- SOLVED (UG/L AS FE) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C) | | | | | .06
.35
.14 | .53
.68
.57 | .02
.00
.05 | 150
1000
240
40 | 2000
950
1300
100 |

 | | | | | .02
.04
.05
.06 | .41
.24
.38
.25
.20 | .07
.03
.03
.04 | 50
40
30
20
10 | 120
110
70
30
20 |

 | | | | | .01
.00
.00
.02
.00 | .18
.52
.34
.08 | .06
.04
.04
.02
.06 | 30
60
40
10
20 | 20
0
5
10
0 |

17 | | | | | .00
.06
.00
.00 | .16
.21
.29
.32
.28 | .07
.03
.05
.05 | 30
30
70
100
80 | 10
10
10
10
0 | 1.6

 | | | | | .01
.00
.00 | .82
.54
1.5 | .11
.02
.04 | 170
150
100 | 20
10
10 | | | | | Table 5.--Water-level records and chemical [Well number 19 on figure 2. Local well number is SB00506424CCA2. | - | | | | | | | | | |--|--|--|--|---|---|---|---|---| | DATE OF
WATER-LEVEL
MEASUREMENT | WATER
LEVEL
(FELT
BELOW
LAND
SURFACE) | DATE
OF
SAMPLE | SPE-
CIFIC
COM-
DUCT-
ANCE
(MICRO-
MHOS) | PH
(UNITS) | TFMPER-
ATURE
(DEG C) | HARD-
NESS
(MG/L
AS
CACO3) | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | CALCIUM,
DIS-
SOLVED
(MG/L
AS CA) | | 74-04-04
74-05-08
74-06-14
74-07-23
74-08-27 | 32.08
32.38
32.26
32.65
32.58 | 74-04-04
74-05-09
74-06-14
74-07-24
74-08-28 | 2430
2450
2440
2450
2430 | 7.1
7.3
7.5
7.4 | 12.5
13.5
13.5
14.5
14.0 | 990
970
990
970
990 | 730
650
680
660
680 | 240
230
240
230
240 | | 74-10-03
/4-11-11
74-12-05
75-02-06
75-05-14 | 32.23
32.08
32.13
32.35
32.69 | 74-10-03
74-11-11
74-12-05
75-02-06
75-05-14 | 2420
2400
2600
2600
3100 | 7.2
7.1
7.1
7.2 | 13.0
13.5
13.0
12.5
13.5 | 920
940
1000
1000
990 | 600
630
690
690
680 | 210
230
240
240
240 | | 75-08-12
75-12-01
76-03-29
76-06-29
76-09-22 | 32.83
31.92
32.38
33.00
32.32 | 75-08-12
75-12-02
76-03-29
76-06-29
76-09-22 | 3100
2900
2400
2500
2400 | 7.7
7.3
7.7
6.7
7.3 | 14.0
13.5
13.0
13.5
13.5 | 1000
960
1000
1000
1000 | 700
650
690
680
710 | 240
230
250
240
250 | | 76-12-08
77-03-08
77-06-15
77-09-13
77-12-06 | 32.07
32.41
33.10
33.18
32.34 | 76-12-08
77-03-08
77-06-15
77-09-13
77-12-06 | 2400
2600
2500
2600
2600 | 7.4
7.5
7.4
7.4
7.3 | 13.0
13.5
13.5
13.5
12.5 | 1000
1000
1000
1100
1100 | 690
680
710
740
740 | 240
240
250
250
250 | | 78-03-09
78-06-20 | 32.44
32.50 | 78-03-09
78-06-20 | 2700
2600 | 7.3
7.3 | 13.0
13.5 | 1100
1000 | 1000
690 | 250
230 | | DATE OF
WATER-LEVEL
MEASUREMENT | | DATE
OF
SAMPLE | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NITRIFE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
CEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | | 74-04-04
74-05-08
74-06-14
74-07-23
74-08-27 | 32.08
32.38
32.26
32.65
32.58 | 74-04-04
74-05-09
74-06-14
74-07-24
74-08-28 | 1.3
1.3
1.3 | 19
19
19
20
20 | 1870
1790
1760
1810
1810 | 4.4
5.7
5.9 | .10
.05
.02 | 4.5
5.7
5.9
5.8
4.2 | | 74-10-03
74-11-11
74-12-05
75-02-06
75-05-14 | 32.23
32.08
32.13
32.35
32.69 | 74-10-03
74-11-11
74-12-05
75-02-06
75-05-14 | 1.1
1.3
1.2 | 20
19
19
20
19 | 1750
1710
1780
1850
1810 | 6.0
6.4
5.8
6.5
5.8 | .01
.00
.01
.01 | 6.0
6.4
5.8
6.5
5.8 | | 75-08-12
75-12-01
76-03-29
76-06-29
76-09-22 | 32.83
31.92
32.38
33.00
32.32 | 75-08-12
75-12-02
76-03-29
76-06-29
76-09-22 | 1.3
1.2
1.2 | 19
19
19
18
19 | 1870
1850
1820
1940
1950 | 6.3
5.8
7.1
6.9
7.5 | .02
.02
.01
.01 | 6.3
5.8
7.1
6.9
7.5 | | 76-12-08
77-03-08
77-06-15
77-09-13
77-12-06 | 32.07
32.41
33.10
33.18
32.34 | 76-12-08
77-03-08
77-06-15
77-09-13
77-12-06 | 1.4
1.4
1.3 | 21
20
19
20
21 | 1930
1920
1980
1920
2000 | 9.3
7.0
7.2
7.4
8.2 | .01
.01
.00
.00 | 9.3
7.0
7.2
7.4
8.2 | | 78-03-09
78-06-20 | 32.44
32.50 | 78-03-09
78-06-20 | | 18
16 | 1320
1970 | 8.4
7.7 | .00
.01 | 8.4
7.7 | | | | | | | | | | | analyses of water from observation wells--Continued Depth is 73 ft. Interval open to the aquifer is 69 to 73 ft] | MAGNE-
S1UM,
D1S-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | BICAR-
BONATE
(MG/L
AS
HCO3) | CAR-
BONATE
(MG/L
AS CO3) | ALKA-
LINITY
(MG/L
AS
CACO3) | SULFATE,
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | |---|---|--|---|--|--|--|--|---| | 96
95
95
97
96 | 220
200
210
220
220 | 3.0
2.8
2.9
3.1
3.0 | 6.1
5.4
5.1
5.1
6.6 | 328
386
380
384
383 | 0
0
0 | 269
317
312
315
314 | 990
900
870
900
900 | 110
120
110
120
120 | | 95
88
99
98
94 | 220
220
210
210
230 | 3.2
3.1
2.9
2.9
3.2 | 5.8
3.4
4.6
5.3
5.7 | 381
379
383
385
3 74 |

0 | 313
311
314
316
307 | 870
820
880
930
890 | 110
110
110
130
120 | | 100
93
93
99
100 | 220
230
210
240
230 | 3.0
3.2
2.9
3.3
3.1 | 5.7
5.4
5.6
5.5
5.6 | 382
379
392
394
396 | 0
0
0
0 | 313
311
322
323
325 | 940
950
910
990
1000 | 130
110
110
120
120 | | 100
99
100
110
110 | 230
230
240
220
240 | 3.1
3.2
3.2
2.9
3.2 | 5.5
5.5
5.5
5.2
5.2 | 395
395
400
410
410 | 0
0
0
0 | 324
324
328
340
340 | 970
970
1000
950
1000 | 130
130
130
130
130 | | 110
110 | 220
240 | 2.9
3.3 | 5.8
5.6 | 70
410 | 0
0 | 57
340 | 1000
1000 | 140
130 | | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | PHOS-
PHORUS,
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C) | | | | | .05
.18
.11
 | .89
.71
.61
 | .07
.02
.06
.06 | 60
130
20
30
20 | 2200
1100
390
280
200 |

 | | | | | .03
.04
.04
.00
.01 | .37
.42
.25
.36 | .03
.03
.05
.03 | 30
40
10
10
30 | 150
100
60
60
50 |

 | | | | | .00
.00
.02
.00 | .41
.56
.36
.38 | .06
.06
.03
.06
.05 | 40
30
40
20
10 | 20
30
20
30
30 | 3.9
2.7 | | | | |
.00
.00
.00 | .48
.36
.49
.45
.69 | .06
.06
.05
.03 | 30
50
90
60
70 | 20
20
20
20
20 | | | | | | .00
.01 | .71
1.4 | .03
.05 | 40
40 | 20
20 | | | | | Table 5.--Water-level records and chemical | [Well numb | er 20 o | n figure | 2. Lo | | | | | .24CCA3. | |--|--|--|--|--|--|---|--|--| | DATE OF
WATER-LEVEL
MEASUREMENT | WATEP
LEVEL
(FEET
BELOW
LAND
SURFACE) | DATE | SPE-
CIFIC
CON-
DUCT-
ANCE
(MICRO-
MHOS) | PH
(UNITS) | TEMPER-
ATURE
(DEG C) | HARD- | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | | 74-04-04
74-05-08
74-06-14
74-07-23
74-08-27 | 32.33
32.55
32.57
32.90
32.80 | 74-04-04
74-05-09
74-06-14
74-07-24
74-08-28 | 2450
2540
2600
2630
2670 | 7.0
7.5
7.5
7.5 | 13.0
14.0
13.5
14.0
13.5 | 1000
1000
1100
1100
1100 | 620
690
730
750
7 90 | 250
250
260
270
270 | | 74-10-03
74-11-11
74-12-05
75-02-06
75-05-14 | 32.45
32.27
32.43
32.58
32.89 | 74-10-03
74-11-11
74-12-05
75-02-06
75-05-14 | 2600
2550
2800
2700
3100 | 7.3
7.1
7.2
7.3 | 13.5
13.0
13.0
13.0
13.5 | 1100
920
1100
1000 | 700
580
780
690
670 | 260
210
270
250
240 | | 75-08-12
75-12-02
76-03-29
76-06-29
76-09-22 | 33.28
32.15
33.14
33.01
32.57 | 75-08-12
75-12-02
76-03-29
76-06-29
76-09-22 | 3300
3300
2450
2400
2500 | 7.5
7.2
7.7
6.8
7.4 | 14.0
13.0
13.0
13.5
13.5 | 1000
1100
1000
1100
1100 | 670
720
640
680
710 | 230
270
240
240
250 | | 76-12-08
77-03-08
77-06-15
77-09-13
77-12-06 | 32.29
32.57
33.20
33.48
32.55 | 76-12-08
77-03-08
77-06-15
77-09-13
77-12-06 | 2500
2500
2600
2600
2600 | 7.5
7.6
7.6
7.5
7.4 | 12.5
13.5
13.5
13.0
12.5 | 1100
1100
1100
1100
1100 | 730
690
770
700
730 | 250
250
260
250
250 | | 78 - 03 -09
78 - 06 - 20 | 33.34
32.62
WATER | 78-03-09
78-06-20 | 2650
2600
FLUO- | 7.4
7.4
SILICA, | 13.5
13.0
SOLIDS,
SUM OF | 1100
1100
NITRO-
GEN, | 1000
720
NITRO-
GEN, | 240
240
NITRO-
GEN, | | DATE OF
WATER-LEVEL
MEASUREMENT | | DATE
OF
SAMPLE | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | NITRATE
DIS-
SOLVED
(MG/L
AS N) | NITRITE
DIS-
SOLVED
(MG/L
AS N) | NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | | 74-04-04
74-05-08
74-06-14
74-07-23
74-08-27 | 32.33
32.55
32.57
32.90
32.80 | 74-04-04
74-05-09
74-06-14
74-07-24
74-08-28 | 1.8
2.2
2.7
2.0
2.0 | 21
20
20
21
21 | 1920
1920
1890
1980
2020 | 4.5
11
12 | .17
.06
.02
 | 4.7
11
12
13
13 | | 74-10-03
74-11-11
74-12-05
75-02-06
75-05-14 | 32.45
32.27
32.43
32.58
32.89 | 74-10-03
74-11-11
74-12-05
75-02-06
75-05-14 | 1.9
1.6
1.8
1.8 | 21
21
20
21
21 | 1950
1840
2000
1990
1840 | 11
13
12
11
8.6 | .00
.00
.00
.00 | 11
13
12
11
8.6 | | 75-08-12
75-12-02
76-03-29
76-06-29
76-09-22 | 33.28
32.15
33.14
33.01
32.57 | 75-08-12
75-12-02
76-03-29
76-06-29
76-09-22 | 1.7
2.0
1.8
1.7 | 20
19
19
19
20 | 1900
2120
1910
2000
1990 | 9.6
9.3
10
11 | .01
.01
.00
.00 | 9.6
9.3
10
11 | | 76-12-08
77-03-08
77-06-15
77-09-13
77-12-06 | 32.29
32.57
33.20
33.48
32.55 | 76-12-08
77-03-08
77-06-15
77-09-13
77-12-06 | 1.7
1.8
1.8
1.9 | 20
21
19
21
21 | 2030
2000
2000
1940
2060 | 15
12
12
14
19 | .00
.01
.00
.00 | 15
12
12
14
19 | | 78-03-09
78-06-20 | 33.34
32.62 | 78-03-09
78-06-20 | 1.9
1.9 | 19
17 | 1780
1950 | 15
18 | .00
.02 | 15
18 | analyses of water from observation wells--Continued Depth is 38 ft. Interval open to the aquifer is 34 to 38 ft] | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM
DIS-
SOLVED
(MG/L
AS NA) | AD-
SORP-
TION | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | BICAR-
BONATE
(MG/L
AS | CAR-
BONATE
(MG/L | ALKA-
LINITY
(MG/L
AS
CACO3) | SULFATE,
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | |--|--|---|--|--|--|--|--|---| | 96
98
100
100
110 | 220
210
220
230
230 | 3.0
2.9
2.9
3.0
3.0 | 7.€
6.8
6.4
7.5
8.1 | 484
413
400
406
410 | 0 | 397
339
328
333
336 | 960
970
930
980
1000 | 95
110
100
110
120 | | 100
96
110
100
100 | 230
2 4 0
230
230
230 | 3.1
3.4
3.0
3.1
3.1 | 7.3
4.3
5.9
6.8
6.8 | 446
414
419
428
412 | | 366
340
344
351
338 | 950
910
990
990
880 | 110
100
110
130
120 | | 110
100
100
110
110 | 230
260
230
250
230 | 3.1
3.4
3.1
3.4
3.1 | 7.2
7.2
7.5
7.5
7.5 | 430
448
450
454
450 | 0 | 353
367
369
372
369 | 940
1100
950
1000
1000 | 110
100
98
98
96 | | 120
110
120
110
120 | 230
230
230
210
240 | 3.0
3.1
3.0
2.8
3.1 | 7.6
7.6
7.8
7.2
6.8 | 471
470
460
460
470 | Č
O | 386
385
377
380
390 | 1000
980
980
950
1000 | 100
110
100
100
100 | | 120
120 | 210
230 | 2.8
3.0 | 8.0
7.7 | 120
4 50 | | 98
370 | 960
920 | 100
110 | | | | | | | | | | | | AINCMMC | MONÍA +
ORGANIC
DIS. | | IRON,
DIS-
SOLVED
(UG/L
AS FE) | SOLVED | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C) | | | | | GEN,
DMMONIA
DIS-
SOLVED
(MG/L | GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L | PHORUS,
ORTHO,
DIS-
SOLVED
(MG/L | DIS-
SOLVED
(UG/L | NESE,
DIS-
SOLVED
(UG/L | ORGANIC
DIS-
SOLVED
(MG/L | | | | | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
.09
.12
.05 | GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | PHORUS,
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
.04
.01
.06
.07 | DIS-
SOLVED
(UG/L
AS FE)
50
50
20
20 | NESE,
DIS-
SOLVED
(UG/L
AS MN)
4900
210
40
10 | ORGANIC
DIS-
SOLVED
(MG/L
AS C) | | | | | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
.09
.12
.05

.03 | GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
1.1
.56
.75

.46 | PHORUS,
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
.04
.01
.06
.07
.12 | DIS-
SOLVED
(UG/L
AS FE)
50
50
20
40
50
30
10 | NESE,
DIS-
SOLVED
(UG/L
AS MN)
4900
210
40
10
30
30
0
10
20 | ORGANIC
DIS-
SOLVED
(MG/L
AS C) | | | | | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
.09
.12
.05

.03
1.9
.01
.04
.01
.01
.00
.00
.02
.00 | GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) 1.1 .56 .7546 .30 .48 .37 .46 .40 .64 .91 .47 .26 | PHORUS,
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
.04
.01
.06
.07
.12
.05
.04
.07
.07
.08
.06
.08 | DIS-
SOLVED
(UG/L
AS FE)
50
50
20
20
40
50
30
10
0
30
10
20 | NESE, DIS-
SOLVED (UG/L AS MN)
4900 210 40 10 30 30 0 10 20 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | ORGANIC
DIS-
SOLVED
(MG/L
AS C) | | | | Table 5.--Water-level records and chemical [Well number 23 on figure 2. Local well number is SB00506425ACB1. | DATE OF
WATER-LEVEL
MEASUREMENT | WATER
LEVEL
(FEET
BELOW
LAND
SURFACE) | DATE
OF
SAMPLE | SPE-
CIFIC
CON-
DUCT-
ANCE
(MICRO-
MHOS) | PH
(UNITS) | TEMPER-
ATURE
(DEG C) | HARD-
NESS
(MG/L
AS
CACO3) | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | CALCIUM,
DIS-
SOLVED
(MG/L
AS CA) | |--|--|--
--|---|---|---|--|---| | 74-04-03 | 34.14 | 74-04-03 | 2730 | 6.5 | 11.5 | 1100 | 600 | 290 | | 74-05-08 | 34.18 | 74-05-08 | 2470 | 6.9 | 13.5 | 920 | 520 | 230 | | 74-06-13 | 34.44 | 74-06-13 | 2340 | 7.1 | 13.5 | 830 | 500 | 210 | | 74-07-23 | 34.69 | 74-07-23 | 2470 | 7.3 | 15.0 | 830 | 520 | 210 | | 74-08-27 | 34.55 | 74-08-27 | 2700 | 7.2 | 14.5 | 920 | 600 | 220 | | 74-10-03
74-11-11
74-12-05
75-02-06
75-05-14 | 33.58
33.50
33.66
33.98
34.52 | 74-10-03
74-11-11
74-12-05
75-02-06
75-05-14 | 2920
3000
3200
3100
3400 | 7.1
6.9
7.0
7.2 | 13.5
12.5
12.0
12.0
13.5 | 960
1000
1100
970
940 | 600
660
740
640
600 | 230
250
260
230
230 | | 75-08-11 | 34.16 | 75-08-11 | 2900 | 7.2 | 13.5 | 800 | 520 | 200 | | 75-12-01 | 33.69 | 75-12-01 | 3400 | 7.4 | 12.5 | 1000 | 670 | 250 | | 76-03-29 | 34.12 | 76-03-29 | 2600 | 7.7 | 12.0 | 920 | 580 | 220 | | 76-06-29 | 34.76 | 76-06-29 | 2400 | 6.7 | 14.0 | 760 | 470 | 190 | | 76-09-22 | 34.35 | 76-09-22 | 2200 | 7.2 | 13.5 | 790 | 510 | 200 | | 76-12-08 | 33.83 | 76-12-08 | 2800 | 7.3 | 13.0 | 1100 | 710 | 260 | | 77-03-08 | 34.27 | 77-03-08 | 2700 | 7.6 | 13.0 | 940 | 620 | 230 | | 77-06-15 | 34.88 | 77-06-15 | 2400 | 7.3 | 14.0 | 840 | 540 | 210 | | 77-09-13 | 34.94 | 77-09-13 | 2300 | 7.5 | 13.0 | 850 | 540 | 210 | | 77-12-06 | 34.09 | 77-12-06 | 2200 | 7.3 | 11.5 | 840 | 540 | 210 | | 78-03-09 | 34.32 | 78-03-09 | 3500 | 7.2 | 12.5 | 1300 | 900 | 300 | | 78-06-20 | 34.37 | 78-06-20 | 240 0 | 7.0 | 13.5 | 860 | 560 | 210 | | DATE OF
WATER-LEVEL
MEASUREMENT | WATER
LEVEL
(FEET
BELOW
LAND
SURFACE) | DATE
OF
SAMPLE | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N) | DIS- | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | | 74-04-03
74-05-08
74-06-13
74-07-23
74-08-27 | 34.14
34.18
34.44
34.69
34.55 | 74-04-03
74-05-08
74-06-13
74-07-23
74-08-27 | 1.0
1.2
1.1
1.3
2.2 | 22
21
19
19
24 | 2010
1820
1700
1790
1920 | .44
1.7
2.2

2.9 | .66
.03
.02
 | 1.1
1.7
2.2
3.8
2.9 | | 74-10-03
74-11-11
74-12-05
75-02-06
75-05-14 | 33.58
33.50
33.66
33.98
34.52 | 74-10-03
74-11-11
74-12-05
75-02-06
75-05-14 | 1.4
1.2
1.4
1.4 | 20
20
19
20
16 | 2220
2260
2280
1860
2050 | 4.8
5.9
6.1
3.4
.48 | .30
.25
.35
.03 | 5.1
6.1
6.4
3.4
.48 | | 75-08-11 | 34.16 | 75-08-11 | 1.1 | 17 | 1740 | 3.7 | .08 | 3.8 | | 75-12-01 | 33.69 | 75-12-01 | 1.3 | 16 | 2320 | 4.2 | .01 | 4.2 | | 76-03-29 | 34.12 | 76-03-29 | 1.2 | 15 | 1920 | 1.9 | .01 | 1.9 | | 76-06-29 | 34.76 | 76-06-29 | 1.3 | 16 | 1720 | 4.0 | .05 | 4.0 | | 76-09-22 | 34.35 | 76-09-22 | 1.3 | 16 | 1750 | 4.2 | .02 | 4.2 | | 76-12-08
77-03-08
77-06-15
77-09-13
77-12-06 | 33.83
34.27
34.88
34.94
34.09 | 76-12-08
77-03-08
77-06-15
77-09-13
77-12-06 | 1.3
1.3
1.3
1.2
1.3 | 19
18
16
17
16 | 2280
2050
1740
1860
1770 | 11
5.3
3.7
3.7
2.1 | .01
.00
.01
.01 | 11
5.3
3.7
3.7
2.1 | | 78-03-09 | 34.32 | 78-03 -0 9 | 1.5 | 19 | 2760 | 8.6 | .00 | 8.6 | | 78-06-20 | 34.37 | 78-06-20 | 1.1 | 13 | 1760 | 1.9 | .03 | 1.9 | analyses of water from observation wells--Continued Depth is 99 ft. Interval open to the aquifer is 94 to 98 ft] | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | BICAR-
BONATE
(MG/L
AS
HCO3) | CAR-
BONATE
(MG/L
AS CO3) | ALKA-
LINITY
(MG/L
AS
CACO3) | SULFATE,
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | | |---|--|---|---|---|--|--|--|---|--| | 100
83
73
75
90 | 250
250
2 4 0
260
290 | 3.2
3.6
3.6
3.9
4.2 | 6.8
5.0
4.8
4.3
7.1 | 656
481
393
380
388 | 0
0
0
 | 538
395
322
312
318 | 910
900
880
940
1000 | 94
77
66
77
82 | | | 93
94
110
97
88 | 340
350
340
230
320 | 4.8
4.8
4.5
3.2
4.6 | 6.8
4.0
5.4
6.7
5.1 | 435
434
441
410
412 | | 357
356
362
336
338 | 1200
1200
1200
940
1100 | 91
95
95
120
81 | | | 74
94
91
70
71 | 260
340
300
270
250 | 4.0
4.7
4.3
4.3
3.9 | 5.9
6.8
6.6
5.5
5.6 | 351
416
414
353
347 | 0
0
0
0 | 288
341
340
290
285 | 920
1300
1000
910
950 | 69
85
77
70
67 | | | 99
88
76
79
77 | 340
300
260
270
250 | 4.6
4.3
3.9
4.0
3.8 | 6.5
6.0
5.3
5.2
5.7 | 428
390
360
380
370 | 0
0
0
0 | 351
320
300
310
300 | 1200
1100
910
1000
950 | 97
92
68
77
71 | | | 130
82 | 410
260 | 5.0
3.9 | 8.0
6.0 | 470
370 | 0
0 | 390
300 | 1500
920 | 120
78 | | | | | | | | | | | | | | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | PHOS-
PHORUS,
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C) | | | | | | GEN,
AMMONIA
DIS-
SOLVED
(MG/L | GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L | PHORUS,
ORTHO,
DIS-
SOLVED
(MG/L | DIS-
SOLVED
(UG/L | NESE,
DIS-
SOLVED
(UG/L | ORGANIC
DIS-
SOLVED
(MG/L | | | | | | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
.17
.17
.34 | GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
.64
.71
.81 | PHORUS,
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
.02
.00
.04
.04 | DIS-
SOLVED
(UG/L
AS FE)
3300
5300
1500
230 | NESE,
DIS-
SOLVED
(UG/L
AS MN)
4900
2700
1500
950 | ORGANIC
DIS-
SOLVED
(MG/L | | | | | | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
.17
.17
.34

.15
.08
.08
.01
.02
.00
.08 | GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
.64
.71
.81

.44
.57
.71
.49
.59 | PHORUS,
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
.02
.00
.04
.05
.02
.01 | DIS-
SOL VED
(UG/L
AS FE)
3300
5300
1500
230
310
60
40
30
10 | NESE,
DIS-
SOLVED
(UG/L
AS MN)
4900
2700
1500
950
810
490
300
150
10 | ORGANIC
DIS-
SOLVED
(MG/L
AS C) | | | | | | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
.17
.17
.34

.15
.14
.08
.08
.01
.02
.00 | GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) .64 .71 .8144 .57 .71 .49 .59 .21 .21 .94 .30 .25 | PHORUS,
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
.02
.00
.04
.05
.02
.01
.02
.01
.04
.02 | DIS-
SOLVED (UG/L
AS FE)
3300
5300
1500
230
310
60
40
30
10
60
20
130
230
100 | NESE,
DIS-
SOLVED
(UG/L
AS MN)
4900
2700
1500
950
810
490
300
150
10
160
110
50
50
70 | ORGANIC
DIS-
SOLVED
(MG/L
AS C) | | | | | Table 5.--Water-level records and chemical [Well number 24 on figure 2. Local well number is SB00506425ACB2. | DATE OF
WATER-LEVEL
MEASUREMENT | WATER
LEVEL
(FEET
BELOW
LAND
SURFACE) | DATE
OF
SAMPLE | SPE-
CIFIC
CON-
DUCT-
ANCE
(MICRO-
MHOS) | PH
(UNITS) | TEMPER-
ATURE
(DEG C) | HARD-
NESS
(MG/L
AS
CACC3) | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | CALCIUM,
DIS-
SOLVED
(MG/L
AS CA) | |--|--|--|--|---|---|---|---|---| |
74-04-03
74-05-08
74-06-13
74-07-23
74-08-27 | 33.42
33.49
33.82
33.95
33.70 | 74-04-03
74-05-08
74-06-13
74-07-23
74-08-27 | 2530
2770
2560
2560
2500 | 7.2
7.3
7.4
7.3
7.1 | 11.5
12.5
13.0
13.5
12.5 | 1100
1000
940
900
850 | 700
650
590
540
500 | 260
250
230
220
200 | | 74-10-03
74-11-11
74-12-05
75-02-06
75-05-14 | 33.08
33.08
33.16
33.52
34.18 | 74-10-03
74-11-11
74-12-05
75-02-06
75-05-14 | 2460
2500
2700
2700
3100 | 7.2
7.1
7.1
7.2 | 12.5
12.0
12.0
11.5
12.5 | 860
8 4 0
860
870
870 | 510
490
510
520
530 | 210
210
210
210
230 | | 75-08-11
75-12-01
76-03-29
76-06-29
76-09-22 | 34.43
33.30
33.70
34.42
34.08 | 75-08-11
75-12-01
76-03-29
76-06-29
76-09-22 | 3000
3000
2675
2900
2800 | 7.3
7.4
7.4
6.6
7.1 | 12.5
11.5
12.0
13.0
13.5 | 900
910
1000
1000
1100 | 550
560
660
680
730 | 210
220
250
250
270 | | 76-12-08
77-03-08
77-06-15
77-09-13
77-12-06 | 33.39
33.90
34.67
34.52
33.84 | 76-12-08
77-03-08
77-06-15
77-09-13
77-12-06 | 2900
3000
3000
3000
3000 | 7.3
7.4
7.4
7.5
7.2 | 12.0
12.5
13.0
13.0
12.0 | 1200
1000
980
1100
1100 | 780
660
610
680
660 | 280
250
240
260
240 | | 78-03-09
78-06-20 | 33.84
34.11 | 78-03-09
78-06-20 | 3000
3000 | 7.2
7.3 | 12.5
13.0 | 1100
1100 | 710
680 | 260
250 | | DATE OF WATER-LEVEL MEASUREMENT | WATER
LEVEL
(FEET
BELOW
LAND
SURFACE) | DATE
OF
SAMPLE | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | | 74-04-03
74-05-08
74-06-13
74-07-23
74-08-27 | 33.42
33.49
33.82
33.95
33.70 | 74-04-03
74-05-08
74-06-13
74-07-23
74-08-27 | 1.5
1.5
1.4
1.6
1.3 | 22
23
23
24
19 | 2250
2100
1960
1890
1780 | 7.3
7.7
7.1

4.2 | .04
.02
.02
 | 7.3
7.7
7.1
7.1
4.2 | | 74-10-03
74-11-11
74-12-05
75-02-06
75-05-14 | 33.08
33.08
33.16
33.52
34.18 | 74-10-03
74-11-11
74-12-05
75-02-06
75-05-14 | 1.5
1.5
1.6
1.5 | 24
23
23
23
23
23 | 1830
1820
1820
1890
1870 | 6.5
6.7
7.3
9.9 | .01
.02
.00
.00 | 6.7
6.5
6.7
7.3
9.9 | | 75-08-11
75-12-01
76-03-29
76-06-29
76-09-22 | 34.43
33.30
33.70
34.42
34.08 | 75-08-11
75-12-01
76-03-29
76-06-29
76-09-22 | 1.4
1.6
1.6
1.6 | 22
22
22
21
22 | 1830
1950
2130
2250
2390 | 6.8
7.0
8.5
8.8
9.4 | .01
.01
.00
.00 | 6.8
7.0
8.5
8.8
9.4 | | 76-12-08 | | | | | | | | | | 77-03-08
77-06-15
77-09-13
77-12-06 | 33.39
33.90
34.67
34.52
33.84 | 76-12-08
77-03-08
77-06-15
77-09-13
77-12-06 | 1.6
1.7
1.7
1.8
1.8 | 21
23
21
23
22 | 2540
2320
2290
2340
2350 | 12
10
8.6
10 | .00
.00
.00
.00 | 12
10
8.6
10 | analyses of water from observation wells--Continued Depth is 64 ft. Interval open to the aquifer is 60 to 64 ft] | MAGNE-
SIUM,
DIS-
SOLVED
'MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | BICAR-
BONATE
(MG/L
AS
HCO3) | CAR-
BONATE
(MG/L
AS CO3) | ALKA-
LINITY
(MG/L
AS
CACO3) | SULFATE,
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | |---|---|--|---|--|--|--|--|---| | 100
94
89
84
85 | 320
280
280
280
280
260 | 4.3
3.8
4.0
4.1
3.9 | 5.9
6.0
5.5
4.2
6.9 | 439
436
429
428
429 | 0 0 0 | 360
358
352
351
352 | 1200
1100
1000
940
890 | 96
100
92
95
91 | | 81
76
82
85
72 | 260
270
270
290
270 | 3.9
4.1
4.0
4.3
4.0 | 6.3
4.4
5.4
6.1
5.2 | 426
426
430
432
421 |

0 | 349
349
353
354
345 | 920
910
900
930
920 | 89
83
90
98
94 | | 92
87
96
100
100 | 270
290
300
320
330 | 3.9
4.2
4.1
4.3
4.4 | 6.2
6.5
7.1
7.0
7.3 | 426
425
435
434
435 | 0
0
0
0 | 349
349
357
356
357 | 900
1000
1100
1200
1300 | 90
85
97
97
98 | | 110
98
93
100
110 | 340
360
350
360
360 | 4.4
4.9
4.9
4.8
4.8 | 7.5
6.6
6.7
6.5
6.9 | 453
454
460
470
480 | 0
0
0
0 | 372
372
380
390
390 | 1400
1200
1200
1200
1200 | 100
110
110
110
120 | | 110
110 | 350
380 | 4.6
5.0 | 7.4
8.2 | 480
480 | 0
0 | 390
390 | 1200
1200 | 120
120 | | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | PHOS-
PHORUS,
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C) | | | | | .08
.12
.05
 | .71
.62
.72
 | .03
.02
.05
.06 | 160
70
20
50
20 | 150
30
0
0 |

 | | | | | .02
.01
.01
.01 | .35
.60
.33
.48 | .03
.04
.04
.03
.04 | 60
20
40
10
40 | 0
0
10
20
5 |

 | | | | | .00
.09
.02
.00 | .30
.97
.49
.23 | .04
.05
.03
.07 | 10
30
10
10
30 | 0
10
0
0 | 3.9
5.3 | | | | | .00
.01
.04
.01 | 1.1
.75
.30
.54 | .02
.04
.05
.02 | 80
50
90
180
200 | 10
10
10
10
20 | | | | | | .00
.01 | .62
1.7 | .02
.07 | 100
230 | 20
5 | | | | | Table 5.--Water-level records and chemical [Well number 25 on figure 2. Local well number is SB00506425ACB3. | DATE OF
WATER-LEVEL
MEASUREMENT | WATER
LEVEL
(FEET
BELOW
LAND
SURFACE) | DATE
OF
SAMPLE | SPE-
CIFIC
CON-
DUCT-
ANCE
(MICRO-
MHOS) | PH
(UNITS) | TEMPER-
ATURE
(DEG C) | HARD-
NESS
(MG/L
AS
CACO3) | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | CALCIUM,
DIS-
SOLVED
(MG/L
AS CA) | |--|--|--|--|---|--------------------------------------|---|--|---| | 74-04-03
74-05-08
74-06-13
74-07-23
74-08-27 | 33.61
33.65
34.05
34.17
33.91 | 74-04-03
74-05-08
74-06-13
74-07-23
74-08-27 | 3090
3000
3150
3140
3190 | 7.1
7.3
7.4
7.3 | 11.5
13.0
12.5
13.0
12.0 | 1300
1200
1300
1300
1500 | 910
870
1000
1000
1100 | 320
300
330
330
360 | | 74-10-03
74-11-11
74-12-05
75-02-06
75-05-14 | 33.26
33.24
33.33
33.69
34.36 | 74-10-03
74-11-11
74-12-05
75-02-06
75-05-14 | 3210
3400
3200
3600
4200 | 7.2
7.0
7.0
6.8 | 12.0
11.5
12.0
11.5
12.5 | 1300
1500
1600
1500
1400 | 1000
1100
1200
1100
1000 | 370
390
400
380
360 | | 75-08-11
76-06-29
76-09-22
76-12-08
77-03-08 | 32.55
34.56
34.26
33.56
34.05 | 75-08-11
76-06-29
76-09-22
76-12-08
77-03-08 | 4000
2900
2700
2800
2900 | 7.0
6.1
6.9
6.7
7.2 | 13.5
12.5
13.5
12.0
12.5 | 1400
1100
1100
1100
1100 | 990
730
770
730
740 | 360
300
310
310
290 | | 77-06-15
77-09-13
77-12-06
78-03-09
78-06-20 | 34.80
34.70
33.74
34.01
34.25 | 77-06-15
77-09-13
77-12-06
78-03-09
78-06-20 | 3000
2900
3000
3000
3000 | 6.9
7.2
6.9
7.0
7.1 | 12.5
13.0
12.0
12.5
13.0 | 1100
1200
1100
1100
1200 | 750
820
760
1000
810 | 280
300
280
270
300 | | DATE OF
WATER-LEVEL
MEASUREMENT | | DATE
OF
SAMPLE | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | CONSTI-
TUENTS,
DIS-
SOLVED | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N) | GEN,
NITRITE
DIS- | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | | 74-04-03
74-05-08
74-06-13
74-07-23
74-08-27 | 33.61
33.65
34.05
34.17
33.91 | 74-04-03
74-05-08
74-06-13
74-07-23
74-08-27 | .9
2.6
1.6 |
22
23
23
23
23
23 | 2410
2290
2550
2430
2570 | 28
13
35 | .22
.08
.05
 | 28
13
35
35
25 | | 74-10-03
74-11-11
74-12-05
75-02-06
75-05-14 | 33.26
33.24
33.33
33.69
34.36 | 74-10-03
74-11-11
74-12-05
75-02-06
75-05-14 | 1.5
.9
1.1 | 23
22
18
26
25 | 2560
2680
2690
2660
2530 | 50
.42
38
35 | .01
.01
.00
.00 | 37
50
.42
38
35 | | 75-08-11
76-06-29
76-09-22
76-12-08
77-03-08 | 32.55
34.56
34.26
33.56
34.05 | 75-08-11
76-06-29
76-09-22
76-12-08
77-03-08 | 1.0
.7 | 27
29
27
31
31 | 2470
2260
2250
2250
2120 | 31
22
22
30
23 | .01
.00
.01
.01 | 31
22
22
22
30
23 | | 77-06-15
77-09-13
77-12-06
78-03-09
78-06-20 | 34.80
34.70
33.74
34.01
34.25 | 77-06-15
77-09-13
77-12-06
78-03-09
78-06-20 | .9
1.2
1.3 | 27
30
26
24
22 | 2180
2150
2310
2080
2330 | 28
16
26
22
22 | .01
.00
.01
.00 | 28
16
26
22
22 | analyses of water from observation wells--Continued Depth is 46 ft. Interval open to the aquifer is 42 to 46 ft] | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | BICAR-
BONATE
(MG/L
AS
HCO3) | CAR-
BONATE
(MG/L
AS CO3) | ALKA-
LINITY
(MG/L
AS
CACO3) | SULFATE,
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | |---|---|--|---|--|--|--|--|---| | 110
110
120
120
140 | 290
290
290
270
270 | 3.6
3.6
3.5
3.2
3.1 | 5.9
5.5
5.6
3.6
7.1 | 421
401
381
385
417 | 0
0
0
 | 345
329
313
316
342 | 1200
1200
1300
1200
1300 | 130
110
140
140
150 | | 100
130
150
140
130 | 270
250
240
260
260 | 3.2
2.8
2.6
2.9
3.0 | 6.0
3.6
5.1
6.0
6.3 | 404
459
478
465
483 |

0 | 331
376
392
381
396 | 1300
1300
1300
1300
1200 | 130
140
150
150
150 | | 120
89
89
91
84 | 250
270
280
280
280 | 2.9
3.5
3.6
3.6
3.7 | 6.2
5.9
5.7
5.9
5.7 | 491
475
448
508
403 | 0
0
0
0 | 403
390
367
417
331 | 1200
1100
1100
1000
970 | 130
130
120
150
160 | | 91
98
100
100 | 290
270
320
300
330 | 3.9
3.5
4.2
4.0
4.2 | 5.8
5.6
5.9
6.2
6.0 | 400
400
430
70
430 | 0
0
0
0 | 328
330
350
57
350 | 1000
1000
1100
1100
1100 | 160
180
150
150
160 | | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | PHOS-
PHORUS,
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C) | | | | | .06
.20
.07
 | .75
.62
.83
 | .03
.04
.06
.07 | 120
40
20
50
20 | 260
40
0
0
20 |

 | | | | | .05
.02
.03
.01 | .26
.37
.38
.66 | .05
.04
.03
.03 | 50
20
10
10
30 | 30
0
10
10 |

 | | | | | .01
.00
.00
.11
.01 | .32
.42
.59
.53 | .03
.07
.06
.02
.05 | 10
0
10
30
30 | 10
0
10
10 | 9.0
23
 | | | | | .00
.01
.01
.01 | .03
.67
.70
1.0 | .04
.01
.01
.01 | 20
30
40
10
0 | 10
0
20
0
10 |

 | | | | Table 5.--Water-level records and chemical [Well number 26 on figure 2. Local well number is SB00506425ADD1. | DATE OF
WATER-LEVEL
MEASUREMENT | WATER
LEVEL
(FEET
BELOW
LAND
SURFACE) | DATE
OF
SAMPLE | SPE-
CIFIC
CON-
DUCT-
ANCE
(MICRO-
MHOS) | PH
(UNITS) | TEMPER-
ATURE
(DEG C) | HARD-
NESS
(MG/L
AS
CACO3) | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | CALCIUM,
DIS-
SOLVED
(MG/L
AS CA) | |---|--|--|---|---|---|---|---|---| | 74-04-04
74-05-08
74-06-14
74-07-23
74-08-27 | 31.04
31.20
31.50
32.40
32.20 | 74-04-04
74-05-09
74-06-14
74-07-23
74-08-27 | 4330
4330
4310
4510
4550 | 7.2
7.3
7.3
7.4 | 12.5
13.0
13.5
14.0
13.5 | 1500
1600
1500
1600
1600 | 1100
1200
1100
1200
1200 | 340
340
340
340
350 | | 74-10-03
74-11-11
74-12-05
75-02-06
75-05-14 | 30.60
30.69
30.90
31.09
31.75 | 74-10-03
74-11-11
74-12-05
75-02-06
75-05-14 | 4490
4500
5700
5000
6500 | 7.2
7.1
7.0
7.3 | 13.5
12.5
13.0
13.0
13.5 | 1500
1500
1500
1500
1500 | 1100
1100
1100
1100
1100 | 330
320
330
320
330 | | 75-08-11
75-12-01
76-03-29
76-06-29
76-09-22 | 32.32
30.74
31.15
32.75
31.24 | 75-08-11
75-12-01
76-03-29
76-06-29
76-09-22 | 3700
5500
4200
4400
4000 | 7.6
7.4
7.4
6.6
7.1 | 14.0
12.5
12.0
13.5
13.0 | 1500
1400
1400
1400
1400 | 1100
1100
1100
1000
1000 | 310
310
330
310
320 | | 76-12-08
77-03-08
77-06-29
77-09-13
77-12-06 | 30.70
31.20
32.58
31.57
30.33 | 76-12-08
77-03-08
77-06-15
77-09-13
77-12-06 | 40 0 0
45 0 0
50 0 0
50 0 0
40 0 0 | 7.3
7.6
7.5
7.3
7.2 | 12.5
12.5
13.5
13.0
12.0 | 1400
1400
1500
1400
1400 | 1100
1100
1100
1000
950 | 310
310
320
320
300 | | 78-03-09
78-06-20
DATE OF
WATER-LEVEL
MEASUREMENT | 31.06
31.85
WATER
LEVEL
(FEET
BELOW
LAND
SURFACE) | 78-03-09
78-06-20
DATE
OF
SAMPLE | 4000
4000
FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | 7.2
7.1
SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | 13.0
13.5
SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | 1300
1500
NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N) | 1300
1100
NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | 290
300
NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | | 74-04-04
74-05-08
74-06-14
74-07-23
74-08-27 | 31.04
31.20
31.50
32.40
32.20 | 74-04-04
74-05-09
74-06-14
74-07-23
74-08-27 | 1.8
2.0
2.5
1.6
1.7 | 20
20
20
21
20 | 3560
3510
3460
3660
3790 | 5.1
7.3
.07
 | .06
.04
.01
 | 5.2
7.3
.08
8.3 | | 74-10-03
74-11-11
74-12-05
75-02-06
75-05-14 | 30.60
30.69
30.90
31.09
31.75 | 74-10-03
74-11-11
74-12-05
75-02-06
75-05-14 | 1.8
1.5
1.7
1.6
1.8 | 20
20
19
20
19 | 3520
3390
3520
3530
3520 | 8.6
8.5
5.9
7.4
8.1 | .01
.00
.00
.00 | 8.6
8.5
5.9
7.4
8.1 | | 75-08-11
75-12-01
76-03-29
76-06-29
76-09-22 | 32.32
30.74
31.15
32.75
31.24 | 75-08-11
75-12-01
76-03-29
76-06-29
76-09-22 | 1.7
1.8
1.8
1.8 | 20
19
19
18
19 | 3640
3610
3420
3490
3500 | 8.4
7.5
5.0
7.6
8.2 | .00
.01
.00
.00 | 8.4
7.5
5.0
7.6
8.2 | | 76-12-08
77-03-08
77-06-29
77-09-13
77-12-06 | 30.70
31.20
32.58
31.57
30.33 | 76-12-08
77-03-08
77-06-15
77-09-13
77-12-06 | 1.7
1.8
1.8 | 18
21
18
20
19 | 3380
3400
3380
3370
3170 | 4.9
4.6
5.6
2.5 | .00
.00
.00 | 6.5
4.9
4.6
5.6
2.5 | | 78-03-09
78-06-20 | 31.06
31.85 | 78-03-09
78-06-20 | | 17
16 | 2880
3 130 | 2.3
3.6 | .01
.03 | 2.3
3.6 | analyses of water from observation wells--Continued Depth is 90 ft. Interval open to the aquifer is 60 to 90 ft] | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | BICAR-
BONATE
(MG/L
AS
HCO3) | CAR-
BONATE
(MG/L
AS CO3) | ALKA-
LINITY
(MG/L
AS
CACO3) | SULFATE,
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | |---|---
---|--|---|--|--|--|---| | 160
170
160
170
170 | 600
540
550
600 | 6.7
6.0
6.2
6.6
6.6 | 10
9.3
9.5
7.2 | 454
445
466
481
493 | 0
0
0
 | 372
365
382
395
404 | 2000
2000
2000
2100
2200 | 180
180
150
150
150 | | 160
160
160
160
160 | 580
580
590
580
580 | 6.6
6.6
6.7
6.6
6.6 | 9.8
5.2
7.7
9.5
7.9 | 484
465
462
464
466 |

0 | 397
381
379
381
382 | 2000
1900
2000
2000
2000 | 140
140
160
180
160 | | 170
160
150
160
150 | 600
600
560
580
590 | 6.8
6.9
6.4
6.7
6.8 | 10
9.9
10
9.4
9.6 | 480
463
473
469
467 | 0
0
0
0 | 394
380
388
385
383 | 2100
2100
1900
2000
2000 | 150
150
190
150
140 | | 160
160
170
150
150 | 570
550
540
540
530 | 6.6
6.3
6.1
6.2
6.2 | 8.8
8.5
8.6
8.6
8.5 | 458
453
450
470
510 | 0
0
0
0 | 376
372
369
390
420 | 1900
1900
1900
1900
1700 | 160
200
180
170
200 | | 150
170
NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | 480
500
NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | 5.7
5.7
PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | 9.3
8.9
IRON,
DIS-
SOLVED
(UG/L
AS FE) | 43
470
MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C) | 35
390 | 1700
1600 | 200
290 | | .05
.08
.06
 | .71
.64
.86
 | .03
.04
.06
.07 | 280
30
10
20
20 | 130
10
0
0 |

 | | | | | .05
.03
.05
.01 | .66
.75
.68
.70 | .05
.04
.05
.03 | 40
40
20
30
50 | 10
0
10
0
10 |

 | | | | | .00
.02
.02
.00 | .67
.96
.88
.46 | .06
.05
.02
.06
.03 | 10
50
20
20
20 | 0
10
0
0
10 | 26
4.5 | | | | | .00
.00
.00 | 1.6
.47
.70
.36 | .04
.05
.04
.02
.02 | 70
90
260
60
70 | 10
20
20
20
10 |

 | | | | | .00
.01 | .73
.78 | .03
.03 | 50
50 | 20
10 | | | | | Table 5.--Water-level records and chemical [Well number 28 on figure 2. Local well number is SB00506425BBD1. | DATE OF
WATER-LEVEL
MEASUREMENT | WATER
LEVEL
(FEET
BELOW
LAND
SURFACE) | DATE
OF
SAMPLE | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | |--|--|--|--|---|--|--|---|--| | 74-04-03
74-05-08
74-06-13
74-07-23
74-08-27 | 35.86
35.99
35.86
36.39
36.32 | 74-04-03
74-05-08
74-06-13
74-07-23
74-08-27 | 1.3
1.4
1.2
1.5
1.5 | 18
19
22
19
20 | 1360
1420
1350
1380
1450 | 3.7
4.4
5.0 | .01
.00
.00 | 3.7
4.4
5.0
4.5
5.0 | | 74-10-03
74-11-11
74-12-05
75-02-06
75-05-14 | 35.82
35.66
35.73
36.09
36.38 | 74-10-03
74-11-11
74-12-05
75-02-06
75-05-14 | 1.3
1.2
1.4
1.3
1.7 | 20
19
18
20
23 | 1440
1380
1390
1440
1600 | 4.5
4.4
4.8
7.8 | .01
.00
.00
.00 | 5.0
4.5
4.4
4.8
7.8 | | 75-08-11
75-12-01
76-03-29
76-06-29
76-09-22 | 36.68
35.75
36.26
37.20
36.38 | 75-08-11
75-12-01
76-03-29
76-06-29
76-09-22 | 1.3
1.3
1.4
1.4 | 18
15
18
17
17 | 1430
1430
1400
1420
1510 | 3.9
3.5
4.2
4.2
4.6 | .01
.01
.00
.00 | 3.9
3.5
4.2
4.2
4.6 | | 76-12-08
77-03-08
77-06-15
77-09-13
77-12-06 | 36.03
36.36
37.00
37.18
36.11 | 76-12-08
77-03-08
77-06-15
77-09-13
77-12-06 | 1.3
1.5
1.7
1.4
1.4 | 17
19
22
19
18 | 1500
1500
1490
1520
1530 | 4.2
3.8
2.8
3.7
4.2 | .01
.01
.01
.00 | 4.2
3.8
2.8
3.7
4.2 | | 78-03-09
78-06-20 | 36.49
36.71 | 78-03-09
78-06-20 | 1.4
1.2 | 17
15 | 1530
1520 | 2.9
3.8 | .01
.02 | 2.9
3.8 | | | | | | | | | | | | DATE OF
WATER-LEVEL
MEASUREMENT | WATER
LEVEL
(FEET
BELOW
LAND
SURFACE) | DATE
OF
SAMPLE | SPE-
CIFIC
CON-
DUCT-
ANCE
(MICRO-
MHOS) | PH
(UNITS) | TEMPER-
ATURE
(DEG C) | HARD-
NESS
(MG/L
AS
CACO3) | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | CALCIUM,
DIS-
SOLVED
(MG/L
AS CA) | | WATER-LEVEL | LEVEL
(FEET
Below
Land | 0F | CIFIC
CON-
DUCT-
ANCE
(MICRO- | | ATURE | NESS
(MG/L
AS | NESS,
NONCAR-
BONATE
(MG/L | DIS-
SOLVED
(MG/L | | WATER-LEVEL
MEASUREMENT
74-04-03
74-05-08
74-06-13
74-07-23 | LEVEL
(FEET
BELOW
LAND
SURFACE)
35.86
35.99
35.86
36.97 | OF
SAMPLE
74-04-03
74-05-08
74-06-13
74-07-23 | CIFIC
CON-
DUCT-
ANCE
(MICRO-
MHOS)
1950
1960
1920
1980 | (UNITS) 7.4 7.4 7.5 7.3 | ATURE
(DEG C)
12.5
14.0
14.0
14.5 | NESS
(MG/L
AS
CACO3)
750
750
750
750 | NESS,
NONCAR-
BONATE
(MG/L
CACO3)
500
490
500
500 | DIS-
SOL VED
(MG/L
AS CA)
180
180
180 | | WATER-LEVEL
MEASUREMENT
74-04-03
74-05-08
74-06-13
74-07-23
74-08-27
74-10-03
74-11-11
74-12-05
75-02-06 | LEVEL
(FEET
BELOW
LAND
SURFACE)
35.86
35.99
35.86
36.97
36.32
35.66
35.73
36.09 | OF
SAMPLE
74-04-03
74-05-08
74-06-13
74-07-23
74-08-27
74-10-03
74-11-11
74-12-05
75-02-06 | CIFIC
CON-
DUCT-
ANCE
(MICRO-
MHOS)
1950
1960
1920
1980
2020
2000
1950
2100
2100 | (UNITS) 7.4 7.4 7.5 7.3 7.3 7.2 7.0 | ATURE (DEG C) 12.5 14.0 14.0 14.5 14.0 13.5 13.0 13.0 13.0 | NESS
(MG/L
AS
CACO3)
750
750
750
800
750
740
770
750 | NESS,
NONCAR-
BONATE
(MG/L
CACO3)
500
500
500
520
490
480
510
480 | DIS-
SOLVED
(MG/L
AS CA)
180
180
180
190
180
190
190 | | WATER-LEVEL
MEASUREMENT
74-04-03
74-05-08
74-06-13
74-07-23
74-08-27
74-10-03
74-11-11
74-12-05
75-02-06
75-05-14
75-08-11
75-12-01
76-03-29
76-06-29 | LEVEL
(FEET
BELOW
LAND
SURFACE)
35.86
35.99
35.86
36.97
36.32
35.66
35.73
36.09
36.38
36.68
35.75
36.26
37.20 | OF
SAMPLE
74-04-03
74-05-08
74-06-13
74-07-23
74-08-27
74-10-03
74-11-11
74-12-05
75-02-06
75-05-14
75-08-11
75-08-11
76-03-29
76-06-29 | CIFIC CON- DUCT- ANCE (MICRO- MHOS) 1950 1960 1920 1980 2020 2000 1950 2100 2700 2400 2300 2000 2000 | (UNITS) 7.4 7.4 7.5 7.3 7.3 7.2 7.0 7.0 7.3 7.5 6.7 | ATURE (DEG C) 12.5 14.0 14.5 14.0 13.5 13.0 13.0 13.0 13.0 13.0 13.0 14.0 | NESS
(MG/L
AS
CACO3)
750
750
750
800
750
750
810
750
750
750
750 | NESS,
NONCAR-
BONATE
(MG/L
CACO3)
500
500
500
520
490
480
510
480
500
500
490
490 | DIS-
SOLVED
(MG/L
AS CA)
180
180
180
190
190
190
180
210
180
190
180 | analyses of water from observation wells--Continued Depth is 103 ft. Interval open to the aquifer is 99 to 103 ft] | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | BICAR-
BONATE
(MG/L
AS
HCO3) | CAR-
BONATE
(MG/L
AS CO3) | ALKA-
LINITY
(MG/L
AS
CACO3) | SULFATE,
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | |---|--|---|---
--|------------------------------------|--|--|---| | 72
73
72
7 4
79 | 160
160
160
170
180 | 2.6
2.5
2.6
2.7
2.8 | 4.8
5.4
4.9
3.3
6.3 | 302
319
304
311
336 | 0
0
0 | 248
262
249
255
276 | 660
700
640
660
690 | 97
100
93
98
100 | | 7 4
65
72
72
70 | 170
180
170
180
210 | 2.7
2.9
2.7
2.9
3.2 | 5.9
3.6
4.9
5.6
6.0 | 323
314
317
329
406 |

0 | 265
258
260
270
333 | 710
650
660
700
750 | 96
93
97
100
90 | | 72
73
72
73
73 | 170
180
170
180
180 | 2.7
2.8
2.7
2.9
2.8 | 5.5
5.8
5.4
5.2
5.2 | 297
341
317
319
281 | 0
0
0
0 | 244
280
260
262
230 | 710
680
670
690
760 | 110
100
110
100
120 | | 76
77
81
80
79 | 180
190
200
190
190 | 2.8
2.9
3.1
2.9
2.9 | 5.3
5.3
5.7
5.1
5.3 | 336
347
650
400
360 | 0
0
0
0 | 276
285
533
330
300 | 730
700
560
690
720 | 120
120
98
120
120 | | 87
79 | 190
190 | 2.8
2.9 | 5.2
5.3 | 420
350 | 0 | 340
290 | 680
710 | 120
130 | | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA -
ORGANIO
DIS.
(MG/L
AS N) | <pre>- PHORUS,
+ ORTHO,</pre> | IRON,
DIS-
SOLVED
(UG/L
AS FE) | (UG/L | ORGANIĆ
DIS-
SOLVED
(MG/L | | | | | .03
.02
.03 | .24
.42
.49
 | .02
.00
.01
.06
.04 | 40
0
20
30
20 | 20
20
20
0
20 | | | | | | .03
.04
.04
.00 | .55
.41
.29
.35 | .02
.01
.03
.04
.06 | 30
30
20
20
20 | 10
0
10
20
5 | | | | | | .00
.02
.02
.00 | .25
.65
.38
.16 | .02
.03
.01
.03
.03 | 30
150
10
40
30 | 0
0
0
0
10 | 35
14 | | | | | .00
.01
.00
.00 | .38
.25
.33
.42
.16 | .01
.04
.04
.01 | 20
60
100
120
100 | 0
10
20
10
20 | | | | | | .00
.01 | .62
.49 | .01
.02 | 180
80 | 10
10 | | | | | Table 5.--Water-level records and chemical [Well number 29 on figure 2. Local well number is SB00506425BBD2. | LMC11 HUM | 061 23 01 | 1 Tigute | | July Wel | i iiumbei | 13 35 | 00000120 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | |--|--|--|--|---|---|---|---|---| | DATE OF
WATER-LEVEL
MEASUREMENT | WATER
LEVEL
(FEET
BELOW
LAND
SURFACE) | DATE
OF
SAMPLE | SPE-
CIFIC
CON-
DUCT-
ANCE
(MICRO-
MHOS) | PH
(UNITS) | TEMPER-
ATURE
(DEG C) | HARD-
NESS
(MG/L
AS
CACO3) | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | CALCIUM,
DIS-
SOLVED
(MG/L
AS CA) | | 74-04-03
74-05-08
74-06-13
74-07-23
74-08-27 | 35.46
35.56
35.83
36.07
35.81 | 74-04-03
74-05-08
74-06-13
74-07-23
74-08-27 | 2130
2150
2200
2150
2130 | 7.2
7.4
7.4
7.3 | 12.5
14.0
14.0
14.5
13.5 | 850
850
860
850
780 | 520
520
530
520
450 | 200
200
200
200
200
190 | | 74-10-03
74-11-11
74-12-05
75-05-14
75-08-11 | 35.30
35.26
35.31
38.55
36.56 | 74-10-03
74-11-11
74-12-05
75-05-14
75-08-11 | 2110
2150
2300
2400
2700 | 7.2
7.1
7.1
7.3 | 13.5
12.5
13.0
14.0
14.5 | 820
810
850
760
820 | 480
470
500
510
500 | 190
200
200
180
190 | | 75-12-01
76-03-29
76-06-29
76-09-22
76-12-08 | 35.52
36.04
36.60
36.26
35.78 | 75-12-01
76-03-29
76-06-29
76-09-22
76-12-08 | 2300
2000
2100
2000
1900 | 7.1
7.5
6.6
7.0
7.3 | 13.0
13.0
13.0
13.5
13.0 | 750
750
780
800
770 | 370
430
340
230
350 | 180
180
180
190
180 | | 77-03-08
77-06-15
77-09-13
77-12-06
78-03-09 | 36.21
36.85
37.04
35.79
36.35 | 77-03-08
77-06-15
77-09-13
77-12-06
78-03-09 | 2100
2200
2200
2200
2250 | 7.5
6.7
7.3
7.2
7.2 | 13.5
13.5
13.0
12.5
13.0 | 770
850
900
900
920 | 410
270
220
180
390 | 180
200
210
210
220 | | 78-06-20 | 36,40 | 78-06-20 | 2400 | 7.2 | 14.0 | 1100 | 360 | 260 | | DATE OF
WATER-LEVEL
MEASUREMENT | WATER
LEVEL
(FEET
BELOW
LAND
SURFACE) | DATE
OF
SAMPLE | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | | 74-04-03
74-05-08
74-06-13
74-07-23
74-08-27 | 35.46
35.56
35.83
36.07
35.81 | 74-04-03
74-05-08
74-06-13
74-07-23
74-08-27 | 1.7
2.0
2.1
1.7 | 23
23
28
24
23 | 1500
1590
1550
1600
1510 | 7.2
7.6
7.0 | .02
.01
.01
.01 | 7.2
7.6
7.0
15
7.6 | | 74-10-03
74-11-11
74-12-05
75-05-14
75-08-11 | 35.30
35.26
35.31
38.55
36.56 | 74-10-03
74-11-11
74-12-05
75-05-14
75-08-11 | 1.6
1.4
1.6
1.3 | 24
23
23
18
23 | 1550
1500
1540
1400
1540 | 8.5
7.8
4.1
7.2 | .01
.00
.00
.00 | 7.9
8.5
7.8
4.1
7.2 | | 75-12-01
76-03-29
76-06-29
76-09-22
76-12-08 | 35.52
36.04
36.60
36.26
35.78 | 75-12-01
76-03-29
76-06-29
76-09-22
76-12-08 | 1.2
1.9
1.7
1.9 | 13
22
22
22
23
21 | 1470
1460
1530
1470
1480 | 3.8
7.7
5.2
3.4
9.0 | .00
.00
.01
.02 | 3.8
7.7
5.2
3.4
9.0 | | 77-03-08
77-06-15
77-09-13
77-12-06
78-03-09 | 36.21
36.85
37.04
35.79
36.35 | 77-03-08
77-06-15
77-09-13
77-12-06
78-03-09 | 1.9
1.7
1.9
1.9
2.0 | 23
23
25
25
21 | 1460
1480
1550
1530
1500 | 6.3
2.2
.05
.22
.75 | .01
.00
.00
.00 | 6.3
2.2
.05
.22
.76 | | 78-06-20 | 36.40 | 78-06-20 | 2.0 | 20 | 1640 | .18 | •02 | .20 | | | | | | | | | | | analyses of water from observation wells--Continued Depth is 68 ft. Interval open to the aquifer is 64 to 68 ft] | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | BICAR-
BONATE
(MG/L
AS
HCO3) | CAR-
BONATE
(MG/L
AS CO3) | ALKA-
LINITY
(MG/L
AS
CACO3) | SULFATE,
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | |--|--|---|---|--|--|--|--|---| | 85
85
87
86
75 | 180
180
180
190
190 | 2.7
2.7
2.7
2.8
3.0 | 5.9
6.3
6.0
6.0
7.6 | 405
398
395
401
406 | 0
0
0
 | 332
326
324
329
333 | 690
770
730
730
690 | 86
95
89
94
96 | | 83
76
84
75
83 | 190
200
190
170
190 | 2.9
3.1
2.8
2.7
2.9 | 7.0
4.1
5.9
4.7
6.4 | 410
414
421
303
387 |

0
0 | 336
340
345
249
317 | 730
670
710
670
740 | 89
81
86
110
86 | | 73
74
81
80
77 | 200
190
200
200
190 | 3.2
3.0
3.1
3.1
3.0 | 6.2
5.9
6.0
6.0
5.9 | 468
392
538
701
509 | 0
0
0
0 | 384
322
441
575
417 | 660
670
660
520
620 | 85
86
89
91
92 | | 78
85
92
92
89 | 190
200
210
200
190 | 3.0
3.0
3.0
2.9
2.7 | 5.9
5.8
6.2
5.6 | 439
710
830
880
640 | 0
0
0
0 | 360
580
680
720
530 | 640
510
500
470
560 | 100
93
100
94
96 | | 100
NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | 230
NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | 3.1
PHOS-
PHORUS,
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C) | 700 | 490 | 110 | | .07
.08
.01
 | .35
.52
.58
 | .03
.02
.02
1.9 | 80
20
10
20
20 | 10
10
20
0
20 | | | | | | .04
.04
.07
.00 | .38
.58
.30
.16 | .04
.03
.04
.02 |
30
10
10
30
10 | 10
0
10
10
0 | | | | | | .05
.02
.00
.00 | .67
.46
.21
.32
.85 | .03
.02
.06
.06 | 90
10
70
60
70 | 0
0
0
10
10 | 3.0
3.2 | | | | | .00
.00
.00
.01 | .46
.87
.31
.14 | .05
.07
.03
.03 | 50
90
200
170
70 | 0
10
10
10 | | | | | | .01 | .42 | .03 | 620 | 20 | | | | | Table 5.--Water-level records and chemical [Well number 30 on figure 2. Local well number is SB00506425BBD3. | DATE OF
WATER-LEVEL
MEASUREMENT | WATER
LEVEL
(FEET
BELOW
LAND
SURFACE) | DATE
OF
SAMPLE | SPE-
CIFIC
CON-
DUCT-
ANCE
(MICRO-
MHOS) | PH
(UNITS) | TEMPER-
ATURE
(DEG C) | HARD-
NESS
(MG/L
AS
CACO3) | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | CALCIUM,
DIS-
SOLVED
(MG/L
AS CA) | |--|--|--|--|---|--|---|---|--| | 74-04-03
74-05-08
74-06-13
74-07-23
74-08-27 | 35.47
35.50
35.83
36.04
35.77 | 74-04-03
74-05-08
74-06-13
74-07-23
74-08-27 | 2540
2570
2530
2470
2550 | 7.4
7.5
7.5
7.4
7.2 | 12.0
13.0
13.0
13.5
12.5 | 950
930
890
830
800 | 690
650
610
560
540 | 200
190
190
180
190 | | 74-10-03
74-11-11
74-12-05
75-05-14
75-08-11 | 35.25
36.34
35.28
37.54
37.39 | 74-10-03
74-11-11
74-12-05
75-05-14
75-08-11 | 2570
2500
2900
3500
3200 | 7.3
7.0
7.1
7.1 | 12.5
12.0
12.5
13.0
13.0 | 910
900
940
940
920 | 610
620
670
570
600 | 220
220
220
220
210 | | 75-12-01
76-03-29
76-06-29
76-09-22
76-12-08 | 35.47
35.98
36.58
36.22
36.38 | 75-12-01
76-03-29
76-06-29
76-09-22
76-12-08 | 3000
2425
2600
2400
2400 | 7.1
7.3
6.6
6.9
7.2 | 13.0
13.0
13.5
13.5
12.5 | 910
930
900
890
910 | 630
630
590
580
600 | 210
210
180
190
200 | | 77-03-08
77-06-15
77-09-13
77-12-06
78-03-09 | 36.15
37.28
37.40
35.95
36.28 | 77-03-08
77-06-15
77-09-13
77-12-06
78-03-09 | 2500
2450
2400
2400
2400 | 7.4
7.3
7.3
7.4
7.1 | 13.5
13.5
13.0
12.0
13.0 | 920
900
980
940
990 | 590
570
600
530
500 | 210
210
240
230
240 | | 78-06-20 | 36.40 | 78-06-20 | 2400 | 6.9 | 14.0 | 920 | 350 | 220 | | | | | | | | | | | | DATE OF
WATER-LEVEL
MEASUREMENT | WATER
LEVEL
(FEET
BELOW
LAND
SURFACE) | DATE
OF
SAMPLE | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | | DATE OF
WATER-LEVEL | LEVEL
(FEET
BELOW
LAND | 0F | RIDE,
DIS-
SOLVED
(MG/L | DIS-
SOLVED
(MG/L
AS | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED | GEN,
NITRATE
DIS-
SOLVED
(MG/L | GEN,
NITRITE
DIS-
SOLVED
(MG/L | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L | | DATE OF
WATER-LEVEL
MEASUREMENT
74-04-03
74-05-08
74-06-13
74-07-23 | LEVEL
(FEET
BELOW
LAND
SURFACE)
35.47
35.50
35.83
36.04 | 0F
SAMPLE
74-04-03
74-05-08
74-06-13
74-07-23 | RIDE,
DIS-
SOLVED (MG/L
AS F)
2.1
2.3
2.6
2.1 | DIS-
SOLVED
(MG/L
AS
SIO2)
24
25
29
25 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
1810
1900
1830
1810 | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
7.5
8.2 | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
.04
.01
.00 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
7.5
8.2
10
6.6 | | DATE OF WATER-LEVEL MEASUREMENT 74-04-03 74-05-08 74-06-13 74-07-23 74-08-27 74-10-03 74-11-11 74-12-05 75-05-14 | LEVEL
(FEET
BELOW
LAND
SURFACE)
35.47
35.50
35.83
36.04
35.77
35.25
36.34
35.28
37.54 | 0F
SAMPLE
74-04-03
74-05-08
74-06-13
74-07-23
74-08-27
74-10-03
74-11-11
74-12-05
75-05-14 | RIDE,
DIS-
SOLVED (MG/L
AS F)
2.1
2.3
2.6
2.1
.3
2.0
1.9
2.0
2.0 | DIS-
SOLVED
(MG/L
AS
SIO2)
24
25
29
25
7.2
25
25
24
26 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
1810
1900
1830
1810
1720
1930
1790
1940
2030 | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
7.5
8.2
10

.17 | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
.04
.01
.00

.01 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
7.5
8.2
10
6.6
.18
8.3
8.6
9.0
8.4 | | DATE OF WATER-LEVEL MEASUREMENT 74-04-03 74-05-08 74-06-13 74-07-23 74-08-27 74-10-03 74-11-11 74-12-05 75-05-14 75-08-11 75-12-01 76-03-29 76-06-29 76-09-22 | SURFACE) 35.47 35.50 35.83 36.04 35.77 35.25 36.34 35.28 37.54 37.39 35.47 35.98 36.58 36.58 | 0F
SAMPLE
74-04-03
74-05-08
74-06-13
74-07-23
74-08-27
74-10-03
74-11-11
74-12-05
75-05-14
75-08-11
75-12-01
76-03-29
76-06-29
76-09-22 | RIDE,
DIS-
SOLVED (MG/L
AS F)
2.1
2.3
2.6
2.1
.3
2.0
1.9
2.0
1.6
2.4
2.5
2.5
2.3 | DIS-
SOLVED (MG/L
AS SIO2)
24
25
29
25
7.2
25
25
24
26
29
27
27
27
27 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
1810
1900
1830
1810
1720
1930
1790
1940
2030
1950
1920
1940
1870
1860 | GEN,
NITRATE
DIS-
SOLVED (MG/L
AS N)
7.5
8.2
10

.17

8.6
9.0
8.4
7.5
7.7
8.4
8.9
9.3 | GEN,
NITRITE
DIS-
SOLVED (MG/L
AS N)
.04
.01
.00
.00
.00
.00
.02 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
7.5
8.2
10
6.6
.18
8.3
8.6
9.0
8.4
7.5
7.7
8.4
8.9
9.3 | analyses of water from observation wells--Continued Depth is 44 ft. Interval open to the aquifer is 40 to 44 ft] | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | AS | CAR-
BONATE
(MG/L
AS CO3) | ALKA-
LINITY
(MG/L
AS
CACO3) | SULFATE,
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | |--|--|---|--|---|--|--|--|---| | 110
110
100
93
80 | 210
250
260
270
260 | 3.0
3.6
3.8
4.1
4.0 | 7.2
7.8
7.2
7.3
8.7 | 318
333
337
331
319 | 0
0
0
 | 261
273
276
272
262 | 970
1000
940
940
920 | 100
110
93
95
98 | | 87
85
96
96
97 | 260
250
280
320
280 | 3.8
3.6
4.0
4.5
4.0 | 8.2
4.9
6.8
6.9
8.1 | 369
341
330
457
399 |

0
0 | 303
280
271
375
327 | 1000
900
1000
1000
1000 | 110
100
110
100
97 | | 94
99
110
100
100 | 280
270
290
250
240 | 4.0
3.8
4.2
3.7
3.5 | 7.9
7.8
7.5
7.9
7.7 | 342
372
383
373
385 | 0
0
0
0 | 281
305
314
306
316 | 1000
1000
930
960
970 | 95
100
94
93
94 | | 96
90
92
88
94 | 250
230
230
230
230
220 | 3.6
3.3
3.2
3.3
3.0 | 7.2
6.8
6.3
6.3
5.6 | 396
400
460
490
590 | 0
0
0
0 | 325
328
380
400
480 | 900
890
890
850
800 | 95
86
88
80
87 | | 90 | 230 | 3.3 | 5.8 | 690 | 0 | 570 | 700 | 86 | | NITRO- | NITRO- | PHOS- | | | | | | | |
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | PHORUS,
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C) | | | | | AMMONÍA
DIS-
SOLVED
(MG/L | MONÍA +
ORGANIC
DIS.
(MG/L | ORTHO,
DIS-
SOLVED
(MG/L | DIS-
SOLVED
(UG/L | NESE,
DIS-
SOLVED
(UG/L | ORGANIC
DIS-
SOLVED
(MG/L | | | | | AMMONÍA
DIS-
SOLVED
(MG/L
AS N)
.08
.06
.01 | MONIA +
ORGANIC
DIS.
(MG/L
AS N)
.37
.43
.63 | ORTHO,
DIS-
SOLVED
(MG/L
AS P)
.03
.02
.02
.08 | DIS-
SOLVED
(UG/L
AS FE)
140
50
50
30 | NESE,
DIS-
SOLVED
(UG/L
AS MN)
40
10
0 | ORGANIC
DIS-
SOLVED
(MG/L | | | | | AMMONÍA
DIS-
SOLVED
(MG/L
AS N)
.08
.06
.01

.03
.02
.04
.04 | MONIA +
ORGANIC
DIS.
(MG/L
AS N)
.37
.43
.63

.44
.33
.56
.28
.28 | ORTHO,
DIS-
SOLVED
(MG/L
AS P)
.03
.02
.02
.08
.00
.03
.03
.04 | DIS-
SOLVED
(UG/L
AS FE)
140
50
50
30
20
50
20 | NESE,
DIS-
SOLVED
(UG/L
AS MN)
40
10
0
20
0
10
10 | ORGANIC
DIS-
SOLVED
(MG/L
AS C) | | | | | AMMONÍA
DIS-
SOLVED
(MG/L
AS N)
.08
.06
.01

.03
.02
.04
.04
.00
.00 | MONIA + ORGANIC DIS. (MG/L AS N) .37 .43 .6344 .33 .56 .28 .28 .32 .64 .44 .25 .54 | ORTHO,
DIS-
SOLVED
(MG/L
AS P)
.03
.02
.02
.08
.00
.03
.04
.04
.04 | DIS-
SOLVED
(UG/L
AS FE)
140
50
50
20
20
20
20
20
30
40 | NESE,
DIS-
SOLVED
(UG/L
AS MN)
40
10
0
20
0
10
10
10
0
10 | ORGANIC DIS- SOLVED (MG/L AS C) | | | | Table 5.--Water-level records and chemical [Well number 32 on figure 2. Local well number is SB00506425DBD1. | DATE OF
WATER-LEVEL
MEASUREMENT | WATER
LEVEL
(FEET
BELOW
LAND
SURFACE) | DATE
OF
SAMPLE | SPE-
CIFIC
CON-
DUCT-
ANCE
(MICRO-
MHOS) | PH
(UNITS) | TEMPER-
ATURE
(DEG C) | HARD-
NESS
(MG/L
AS
CACO3) | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | CALCIUM,
DIS-
SOLVED
(MG/L
AS CA) | |---|--|--|--|--|--|---|--|---| | 74-04-04
74-05-08
74-06-14
74-07-23
74-08-27 | 28.09
28.17
28.48
28.08
27.43 | 74-04-04
74-05-09
74-06-14
74-07-12
74-08-27 | 2560
2700
2740
2690
2620 | 7.3
7.3
7.4
7.4 | 13.0
13.5
14.0
14.5
14.0 | 990
1100
1000
990
940 | 670
730
710
670
630 | 230
240
250
230
210 | | 74-10-03
74-11-11
74-12-05
75-02-06
75-05-14 | 27.20
27.37
27.41
27.85
28.59 | 74-10-03
74-11-11
74-12-05
75-02-06
75-05-14 | 2590
2550
2800
2650
2700 | 7.2
7.0
6.9
7.0 | 14.0
13.5
13.0
13.0
13.5 | 940
940
950
890
840 | 630
650
650
570
220 | 210
220
220
200
200 | | 75-08-11
75-12-01
76-03-29
76-06-29
76-09-22 | 28.57
27.54
28.18
.28.97
28.18 | 75-08-11
75-12-01
76-03-29
76-06-29
76-09-22 | 3100
3000
2 4 50
2700
2800 | 7.2
7.2
7.4
6.4
6.9 | 14.5
12.0
11.0
12.0
11.5 | 950
960
900
990
1100 | 530
600
4 70
360
510 | 220
230
210
240
270 | | 76-12-08
77-03-08
77-06-15
77-09-13
77-12-06 | 27.28
28.23
28.60
28.49
27.73 | 76-12-08
77-03-08
77-06-15
77-09-13
77-12-06 | 2600
3000
3100
2800
2600 | 7.2
7.5
7.1
7.1
7.0 | 11.0
11.5
12.0
12.0
11.0 | 1000
1100
1100
990
960 | 540
480
230
450
390 | 240
260
260
240
220 | | 78-03-09
78-06-20 | 27.80
28.89 | 78-03-09
78-06-20 | 3000
2600 | 7.0
7.0 | 11.5
12.0 | 1100
960 | 490
110 | 250
220 | | | WATER | | | | SOLIDS, | NITRO- | NITRO- | NITRO- | | DATE OF
WATER-LEVEL
MEASUREMENT | LEVEL
(FEET
BELOW
LAND
SURFACE) | DATE
OF
SAMPLE | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N) | GEN, NITRITE DIS- SOLVED (MG/L AS N) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | | WATER-LEVEL | LEVEL
(FEET
BELOW
LAND | OF | RIDE,
DIS-
SOLVED
(MG/L | DIS-
SOLVED
(MG/L
AS | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED | GEN,
NITRATE
DIS-
SOLVED
(MG/L | GEN,
NITRITE
DIS-
SOLVED
(MG/L | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L | | WATER-LEVEL
MEASUREMENT
74-04-04
74-05-08
74-06-14
74-07-23 | LEVEL
(FEET
BELOW
LAND
SURFACE)
28.09
28.17
28.48
28.08 | 0F
SAMPLE
74-04-04
74-05-09
74-06-14
74-07-12 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
1.5
1.4
1.5 | DIS-
SOLVED
(MG/L
AS
SIO2)
17
18
18 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
2040
2060
2090
1950 | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
2.4
3.2
3.6 | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
.01
.01 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
2.4
3.2
3.6
2.4 | | WATER-LEVEL
MEASUREMENT
74-04-04
74-05-08
74-06-14
74-07-23
74-08-27
74-10-03
74-11-11
74-12-05
75-02-06 | 28.09
28.17
28.48
28.08
27.43
27.20
27.37
27.41
27.85 | OF
SAMPLE
74-04-04
74-05-09
74-06-14
74-07-12
74-08-27
74-10-03
74-11-11
74-12-05
75-02-06 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
1.5
1.5
1.5
1.5
1.5
1.3
1.4 | DIS-
SOLVED
(MG/L
AS
SIO2)
17
18
18
18
18
17
17 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
2040
2060
2090
1950
1890
1870
1850
1850
1790 | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
2.4
3.2
3.6

1.8
1.7
1.3
4.6 | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
.01
.01
.01
.00
.00 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
2.4
3.2
3.6
2.4
2.2
1.8
1.7
1.3
4.6 | | WATER-LEVEL
MEASUREMENT 74-04-04 74-05-08 74-06-14 74-07-23 74-08-27 74-10-03 74-11-11 74-12-05 75-02-06 75-05-14 75-08-11 75-12-01 76-03-29 76-06-29 | LEVEL
(FEET
BELOW
LAND
SURFACE)
28.09
28.17
28.48
27.43
27.20
27.37
27.41
27.85
28.59
28.57
27.54
28.18
28.97 | OF
SAMPLE
74-04-04
74-05-09
74-06-14
74-07-12
74-08-27
74-10-03
74-11-11
74-12-05
75-02-06
75-05-14
75-08-11
75-12-01
76-03-29
76-06-29 | RIDE,
DIS-
SOLVED (MG/L
AS F)
1.5
1.5
1.5
1.3
1.4
1.3
1.3
1.2 | DIS-
SOLVED
(MG/L
AS
SIO2)
17
18
18
18
18
17
17
17
19
19
16
16
16 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
2040
2090
1950
1890
1870
1850
1790
1450
1730
1950
1800
1930 | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
2.4
3.2
3.6

1.8
1.7
1.3
4.6
.14
.26
1.1 | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
.01
.01
.01
.00
.00
.00
.00
.01
.01 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
2.4
3.2
3.6
2.4
2.2
1.8
1.7
1.3
4.6
.15
.27
1.1
1.3
1.2 | analyses of water from observation wells--Continued Depth is 68 ft. Interval open to the aquifer is 48 to 68 ft] | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L | , SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | BONATE
(MG/L
AS | CAR-
BONATE
(MG/L
AS CO3) | ALKA-
LINITY
(MG/L
AS
CACO3) | SULFATE,
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | |--|--|--
--|--|--|--|--|---| | 100
110
100
100
100 | 270
250
280
270
270 | 3.7
3.4
3.8
3.7
3.8 | 8.2
8.3
7.6
5.5
9.8 | 381
394
400
387
368 | 0
0
0
 | 313
323
328
317
302 | 1100
1100
1100
1000
950 | 110
120
120
120
140 | | 100
96
98
95
82 | 250
270
250
250
190 | 3.6
3.8
3.5
3.6
2.9 | 8.8
5.4
7.4
8.3
7.4 | 369
365
372
394
747 |

0 | 303
299
305
323
613 | 950
910
940
870
450 | 140
140
130
130
130 | | 98
94
91
95
99 | 210
260
250
280
310 | 3.0
3.7
3.6
3.9
4.1 | 8.5
8.3
8.5
8.4
8.9 | 518
444
529
771
703 | 0
0
0
0 | 425
364
434
632
577 | 800
980
830
750
1000 | 120
140
130
150
140 | | 100
100
110
96
100 | 300
310
300
340
300 | 4.1
4.1
3.9
4.7
4.2 | 7.9
7.9
8.1
7.4
7.5 | 577
714
1060
660
700 | 0
0
0
0 | 473
586
869
540
570 | 970
860
690
890
760 | 140
160
160
140
140 | | 120
100 | 280
270 | 3.6
3.8 | 7.4
7.9 | 770
1040 | 0
0 | 630
850 | 670
460 | 160
150 | | | | | | | | | | | | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | PHOS-
PHORUS,
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C) | | | | | GEN,
AMMONIA
DIS-
SOLVED
(MG/L | GEN,AM- F
MONIA +
ORGANIC
DIS.
(MG/L | PHORUS,
ORTHO,
DIS-
SOLVED
(MG/L | IRON,
DIS-
SOLVED
(UG/L | NESE,
DIS-
SOLVED
(UG/L | ORGANIC
DIS-
SOLVED
(MG/L | | | - | | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
.09
.05
.03 | GEN,AM- F
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
.46
.51
.73 | PHORUS,
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
.02
.01
.04 | IRON,
DIS-
SOLVED
(UG/L
AS FE)
590
80
20
30 | NESE,
DIS-
SOLVED
(UG/L
AS MN)
120
20
0 | ORGANIC
DIS-
SOLVED
(MG/L | | | | | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
.09
.05
.03
.04
.00 | GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
.46
.51
.73

.47
.40
.42
.21
.49 | PHORUS,
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
.02
.01
.04
.05
.06
.02
.01
.03
.01 | IRON,
DIS-
SOLVED
(UG/L
AS FE)
590
80
20
30
20
50
30
10
40 | NESE,
DIS-
SOLVED
(UG/L
AS MN)
120
0
0
0
30
30
10
0 | ORGANIČ DIS- SOLVED (MG/L AS C) | | | | | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
.09
.05
.03
.04
.00
.01
.00 | GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) .46 .51 .7347 .40 .42 .21 .49 1.0 .62 .77 .69 .95 | PHORUS,
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
.02
.01
.05
.06
.02
.01
.03
.01
.03
.01
.03 | IRON,
DIS-
SOLVED
(UG/L
AS FE)
590
80
20
30
20
50
30
10
40
100
70
90
140
170 | NESE,
DIS-
SOLVED
(UG/L
AS MN)
120
0
0
30
30
30
0
10
0
50
170
170
420
1500 | ORGANIC DIS- SOLVED (MG/L AS C) | | | | Table 5.--Water-level records and chemical [Well number 37 on figure 2. Local well number is SB00506426ADD1. | DATE OF
WATER-LEVEL
MEASUREMENT | WATER LEVEL (FEET BELOW LAND SURFACE) | DATE
OF
SAMPLE | SPE-
CIFIC
CON-
DUCT-
ANCE
(MICRO-
MHOS) | PH
(UNITS) | TEMPER-
ATURE
(DEG C) | HARD-
NESS
(MG/L
AS
CACO3) | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | CALCIUM,
DIS-
SOLVED
(MG/L
AS CA) | |--|---|--|--|---------------------------------|---|---|--|---| | 74-04-04
74-05-08
74-06-14
74-07-23
74-08-27 | 26.67
27.05
27.19
27.09
25.74 | 74-04-04
74-05-08
74-06-14
74-07-24
74-08-28 | 2270
2490
2220
2230
2330 | 7.1
7.3
7.4
7.3 | 12.5
13.0
13.5
14.0
13.0 | 860
1000
860
850
940 | 490
630
500
480
570 | 200
240
200
190
220 | | 74-10-03
74-11-11
74-12-05
75-02-06
75-05-14 | 25.43
25.73
25.91
26.59
27.66 | 74-10-04
74-11-11
74-12-05
75-02-06
75-05-14 | 2270
2450
2650
2700
2800 | 7.1
7.0
6.8
7.0 | 12.5
12.0
13.0
12.5
13.5 | 860
930
950
1000
850 | 490
560
570
610
490 | 200
220
220
220
190 | | 75-08-12
75-12-02
76-03-29
76-06-28
76-09-22 | 28.03
25.99
27.01
27.87
25.93 | 75-08-12
75-12-02
76-03-29
76-06-28
76-09-22 | 2600
3200
2400
2100
2200 | 7.3
7.3
7.3
7.1
7.1 | 13.5
13.0
12.0
13.5
13.0 | 770
970
920
720
830 | 410
600
530
380
480 | 170
230
220
160
190 | | 76-12-08
77-03-08
77-06-15
77-09-13
77-12-06 | 26.18
27.08
27.89
26.92
26.62 | 76-12-08
77-03-08
77-06-15
77-09-12
77-12-06 | 2600
3100
2600
2300
2400 | 7.3
7.4
7.5
7.3
7.3 | 12.5
13.0
13.5
13.0
12.0 | 1100
1100
880
850
900 | 700
700
520
480
530 | 250
260
200
190
200 | | 78-03-09
78-06-20 | 27.16
27.68 | 78-03-09
78-06-20 | 2400
2700 | 7.2
7.6 | 13.0
14.0 | 900
1100 | 530
750 | 200
260 | | DATE OF
WATER-LEVEI
MEASUREMENT | | DATE
OF
E) SAMPLE | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | AS | CONSTI-
TUENTS,
DIS-
SOLVED | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N) | GEN,
NITRITE
DIS- | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | | 74-04-04
74-05-08
74-06-14
74-07-23
74-08-27 | 26.67
27.05
27.19
27.09
25.74 | 74-04-04
74-05-08
74-06-14
74-07-24
74-08-28 | 3 2.4
4 2.5
4 1.9 | 25
26
25
26
26 | 1620
1870
1640
1610
1710 | 5.7
5.7
7.4 | .31
.02
.01 | 6.0
5.7
7.4
7.3 | | 74-10-03
74-11-11
74-12-05
75-02-06
75-05-14 | 25.43
25.73
25.91
26.59
27.66 | 74-10-04
74-11-12
74-12-09
75-02-00
75-05-14 | 1 1.6
5 1.7
5 1.7 | 26
25
24
26
24 | 1680
17 4 0
1750
1880
1620 | 12
10
13
8.7 | .01
.00
.00
.00 | 9.0
12
10
13
8.7 | | 75-08-12
75-12-02
76-03-29
76-06-28
76-09-22 | 28.03
25.99
27.01
27.87
25.93 | 75-08-1:
75-12-0:
76-03-2:
76-06-2:
76-09-2: | 2 1.4
9 1.8
8 1.9 | 24
18
23
23
24 | 1530
1980
1740
1450
1630 | 6.9
11
12
7.6
9.8 | .01
.01
.00
.00 | 6.9
11
12
7.6
9.8 | | 76-12-08
77-03-08
77-06-15
77-09-13
77-12-06 | 26.18
27.08
27.89
26.92
26.62 | 76-12-0
77-03-0
77-06-1
77-09-1
77-12-0 | 8 1.9
5 1.8
2 1.8 | 23
25
24
26
25 | 2210
2060
1740
1650
1710 | 20
7.7
11
9.0 | .00
.01
.00
.00 | 20
7.7
11
9.0 | | 78-03-09
78-06-20 | 27.16
27.68 | 78-03-09
78-06-2 | | 23
21 | 1630
1980 | 11
30 | .00
.03 | 11
30 | analyses of water from observation wells--Continued Depth is 68 ft. Interval open to the aquifer is 64 to 68 ft] | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | BICAR-
BONATE
(MG/L
AS
HCO3) | CAR-
BONATE
(MG/L | ALKA-
LINITY
(MG/L
AS
CACO3) | SULFATE,
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | |--|---|---|--|--|--|--|--|---| | 88
100
88
91
94 | 220
220
210
210
210 | 3.3
3.0
3.1
3.1
3.0 | 6.6
6.8
6.1
5.3
7.8 | 459
460
438
446
450 | 0
0
0
 | 376
377
359
366
369 | 730
910
770
7 4 0
780 | 93
110
90
94
100 | | 87
93
98
110
92 | 210
230
220
2 40
220
| 3.1
3.3
3.1
3.3
3.3 | 6.6
4.5
6.0
6.6
5.4 | 447
458
465
478
446 |

0 | 367
376
381
392
366 | 790
780
800
850
730 | 96
110
110
130
100 | | 84
97
90
79
87 | 200
260
220
200
210 | 3.1
3.6
3.2
3.2
3.2 | 6.4
7.4
6.9
5.8
6.2 | 438
460
472
419
436 | 0
0
0
0 | 359
377
387
344
358 | 710
960
780
650
760 | 85
130
110
86
91 | | 110
110
93
90
97 | 270
270
240
220
220 | 3.6
3.5
3.5
3.3
3.2 | 7.2
7.1
6.3
5.8
6.1 | 455
487
440
440
450 | 0
0
0
0 | 373
399
361
360
370 | 1100
960
800
760
790 | 130
150
110
96
99 | | 98
110 | 20 0
2 40 | 2.9
3.1 | 6 .4
6 . 9 | 450
430 | 0
0 | 370
350 | 790
830 | 43
170 | | | NITRO- | PHOS- | | | | | | | | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | PHORUS,
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C) | | | | | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
.05
.08
.03 | GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L | PHORUS,
ORTHO,
DIS-
SOLVED
(MG/L | DIS-
SOLVED
(UG/L | NESE,
DIS-
SOLVED
(UG/L | ORGANIC
DIS-
SOLVED
(MG/L | | | | | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
.05
.08
.03

.03
.03
.03
.03 | GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
1.2
.62
.72 | PHORUS,
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
.03
.01
.05
.06 | DIS-
SOLVED
(UG/L
AS FE)
40
20
0 | NESE,
DIS-
SOLVED
(UG/L
AS MN)
210
110
0 | ORGANIC
DIS-
SOLVED
(MG/L
AS C) | | | | | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
.05
.08
.03

.03
.03
.03 | GEN,AM-MONIA + ORGANIC DIS. (MG/L AS N) 1.2 .62 .72 .63 .44 .49 .34 .45 .21 .16 .81 .29 .33 .41 | PHORUS,
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
.03
.01
.05
.06
.07
.02
.03
.05
.03
.04
.03
.04
.03
.04 | DIS-
SOLVED
(UG/L
AS FE)
40
20
0
50
60
10
10
20
60
10
20
40
30 | NESE,
DIS-
SOLVED
(UG/L
AS MN)
210
110
0
0
0
0
10
0
5 | ORGANIC
DIS-
SOLVED
(MG/L
AS C) | | | | | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
.05
.08
.03
.03
.03
.03
.03
.01
.00 | GEN,AM-MONIA + ORGANIC DIS. (MG/L AS N) 1.2 .62 .72 .63 .44 .49 .34 .45 .21 .16 .81 .29 .33 | PHORUS,
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
.03
.01
.05
.06
.07
.02
.03
.05
.03
.04
.03
.03
.01
.05 | DIS-
SOLVED
(UG/L
AS FE)
40
20
0
50
60
10
10
20
60
10
20
40 | NESE,
DIS-
SOLVED
(UG/L
AS MN)
210
110
0
0
0
0
0
0
0
0
0
5 | ORGANIC DIS-
SOLVED (MG/L AS C) | | | | Table 6.--Chemical analyses of water from domestic, stock, and irrigation wells | - 1 | 1 | 1 | | | | | | | | |-----|--|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | | ,50N+ ₂ ON, HO ₂ ,
beyfozeib
(M Sb J\gm) | 7.9 | 9.0 | 7.3 | 5.4 | 1.3 | 4.9 | 7.0 | 1.7 | | | Chloride, dissolved
(mg/L as Cl) | 20, | 110 | 150 | 140 | 120 | 80 | 84 | 100 | | | lfate, dissolved)
(پا30 se الم | 094 | 830 | 1,500 | 1,200 | 840 | 780 | 800 | 810 | | | bəvíozsib ,muisəngeM
(pM se J\pm) | 53 | 82 | 130 | 97 | 9 | 72 | 87 | 89 | | | beviozsib ,muisled
(EJ ze J\gm) | 130 | 220 | 300 | 160 | 230 | 190 | 190 | 190 | | | Hardness
(mg/L as CaCO ₃) | 540 | 890 | 1,300 | 800 | 820 | 770 | 830 | 840 | | | Temperature
(3°) | 17.5 | 14.5 | 15.0 | 14.0 | 13.5 | 13.0 | 13.0 | 14.5 | | | (edinu) Hq | 7.3 | 6.9 | 7.3 | 7.1 | 7.3 | 7.3 | 7.3 | 7.2 | | | Specific conduct-
ance (micromhos) | 1,600 | 2,350 | 3,550 | 3,100 | 2,300 | 2,050 | 2,180 | 2,500 | | | Uepth of well
 (feet) | - | 40 | 107 | 100 | 75 | 83 | 37 | 62 | | | əfqmas ło ətad
(d-M-Y) | 74-07-09 | 74-07-09 | 74-07-12 | 74-07-09 | 74-07-09 | 74-07-08 | 74-07-08 | 74-07-09 | | | ГОСЯ] мејј илшрек | SB00506319CDC1 | SB00506330ACC1 | SB00506330BCC1 | SB00506330DBB1 | SB00506330DCC1 | SB00506423BBC1 | SB00506424AAA1 | SB00506426ACC1 | | | Site number in
figure 2 | - | ٣ | 2 | 7 | ∞ | 6 | 17 | 36 | Table 7.--Chemical analyses of water from two runoff-retention ponds and | | | 1 | | | |--|---|-------------------------|-------------------------------|--| | | Alkalinity
(mg/L as CaCO ₃) | 344 | 107 | 288
1,480

750 | | | Carbonate ($_{3}$) | 0 | 0 | 0010 | | | Bicarbonate
(₆ 03H zs J\pm) | 420 | 130 | 351
1,810
534
910 | | 877 | Potassium, dissolvėd
(mg/L as K) | 5.9 | 12 | 7.8
690
29
52 | | iht we | noitqrosbs ,muibo2
oiter | 3.1 | 1.6 | 3.5.3 | | by eig | bəviossib ,muiboč
(my/L ss 1/em) | 220 | 34 | 230
210
230
290 | | the feedlot water system supplied by eight wells | bəvfozzib ,muizəngsM
(gM zs J\gm) | 97 | 5.5 | 96
210
92
100 | | ystem | Calcium, dissolved
(mg/L as Ca) | 230 | 25 | 200
540
220
250 | | ter s | Hardness, noncarbonate (mg/L as CaCO ₃) | 630 | 0 | 610 730 | | dlot wa | esanbaeH
(₆ 03ь3 гь J\рm) | 970 | 85 | 890
2,200
930 | | he fee | Temperature
(°C) | 12.5 | 7.0 | 18.0 | | from t | (sjinu) Hq | 6.9 | 7.7 | 7.9 | | •• | Specific conductance
(micromhos) | 2,600 | 360 | 2,500 5,500 3,100 | | | əfqmas ło ətad
(q-m-y) | 75-03-18 | 75-03-18 | 75-03-18
76-09-22
77-03-08
77-06-15 | | | эты эjiZ | Feedlot water
system | Northeast reten-
tion pond | Southeast reten-
tion pond | Table 7.--Chemical analyses of water from two runoff-retention ponds and from the feedlot water system supplied by eight wells--Continued | bəviozzib ,əzənsgamaM
(nM zs J\gu) | 10 | 90 | 70
4,000
150
350 | |---|-------------------------|--------------------------|--| | lron, dissolved
(µg/L as Fe) | 10 | 360 | 20
9,500
340
360 | | Phosphorus, ortho,
dissolved (mg/L as P) | 90.0 | 7.3 | .19 | | Nitrogen, ammonia +
organic, dissolved
(mg/L as N) | 0.29 | 4.5 | 1.1
220
15
69 | | Nitrogen, ammonia,
dissolved (mg/L as N) | 0.01 | .8 | .40
38
5.7
25 | | Nitrogen, NO ₂ +NO ₃ ,
dissolved (mg/L as N) | 9.8 | 90. | 3.7
1.7
1.0
1.0 | | Nitrogen, nitrite,
dissolved (mg/L as N) | 00.00 | .00 | .00
.00
.00 | | Nitrogen, nitrate,
dissolved (mg/L as N) | 8.6 | 90. | 3.5
1.6
.03 | | con come solids, sum of con-
stituents, dissolved
(mg/L) | 1,830 | 240 | 1,740 | | Silica, dissolved
(mg/L as SiO ₂) | 23 | Ξ | 8.6
54
25
31 | | Fluoride, dissolved
(mg/L as F) | 1.6 | .7 | - 2 | | Chloride, dissolved
(mg/L as Cl) | 100 | 22 | 170
380
120
130 | | bəvlozzib ,əfefluð
(O2 zs J\gm) | 910 | 43 | 840
480
820
790 | | bled of sample
(d-M-Y) | 75-03-18 | 75-03-18 | 75-03-18
76-09-22
77-03-08
77-06-15 | | əmen ∋jiZ | Feedlot water
system | Northeast retention pond | Southeast retention pond | Table 8.--Logs of wells drilled by the U.S. Geological Survey | | Thick-
ness
(feet) | Depth
(feet) | |---|--------------------------|----------------------------| | Well 6. Altitude: 4,579 feet | | | | Topsoil, fine-grained | 5
5
5
5 | 5
10
15
20 | | Gravel, fine- to coarse-grained; some coarse-grained sand; some clay | 15
5 | 40
45 | | coarse-grained gravel | 5
5
5 | 50
55
60 | | Sand, coarse-grained; some fine- to medium-grained gravel; some clay; hard drilling | 5
5
5
1 | 65
70
75
80
81 | | Sand, coarse-grained; fine- to medium-grained gravel; some clay | 4
5 | 85
90 | | Clay, beige, sandy; some coarse-grained sand; some fine-
to medium-grained gravel; hard drilling | 10
5 | 100
105
110 | | Clay, dense, darkShale, dark gray | 5
5
4 | 115
119 | Table 8.--Logs of wells drilled by the U.S. Geological Survey--Continued | | Thick-
ness
(feet) | Depth
(feet) | |--|--------------------------|----------------------------| | Well 11. Altitude: 4,595 feet | | | | Clay, dark; medium-grained gravel; some sand | 5
5
5 | 5
10
15 . | | Sand, medium-grained; fine-grained gravel | 5
10 | 20
30 | | Sand, coarse-grained; coarse-grained gravel | 10
5
5 | 40
45
50 | | Gravel, medium-grained; some clayey sand; some coarse-grained gravel | 5 | 55 | | Gravel, medium- to coarse-grained Gravel, coarse; boulders Clay, sandy Sand; gravel Clay, sandy; some sand; some fine-grained gravel | 10
5
9
1
5 | 65
70
79
80
85 | | Clay, light brown, sandy | 7
18
5
2 | 92
110
115
117 | | Well 13. Altitude: 4,599 feet | | | | Sand, fine-grained, clayey | 15
5
3
1
4 | 15
20
23
24
28 | | Sand, fine- to coarse-grained; fine- to medium-grained gravel; poorly sorted | 7
11
3
31 | 35
46
49
80 | | Clay Sand, coarse-grained, fine- to
medium-grained gravel | 28 | 108
128 | | Shale | 3 | 131 | Table 8.--Logs of wells drilled by the U.S. Geological Survey--Continued | Thick-
ness
(feet) | Depth
(feet) | |--------------------------|--| | | | | 40 | 40 | | 17 | 57 | | 4 | 61 | | 7 | 6 8 | | | 75
80 | | כ | 80 | | 5 | 85 | | _ | - 1 | | 9 | 94 | | 14 | 108 | | 2 | 110 | | 10 | 120 | | 14 | 134 | | | | | 4 | 4 | | 5 | 9
15 | | | 20 | | 5 | 25 | | Е | 20 | | _ | 30
35 | | 5 | 40 | | 5 | 45 | | 4 | 49 | | 2 | 51 | | 3 | 54 | | | 56 | | 4
4 | 60
64 | | | ness
(feet)
40
17
4
7
7
5
5
9
14
2
10
14
4
5
6
5
5
5
5
5
4
2
4 | Table 8.--Logs of wells drilled by the U.S. Geological Survey--Continued | | Thick-
ness
(feet) | Depth
(feet) | |---|--------------------------|-----------------------------| | Well 23. Altitude: 4,588 feetContinue | :d | | | Sand, coarse-grained; fine-grained gravel, broken chips Gravel, fine- to coarse-grained, broken chips Gravel, fine- to medium-grained, well-sorted Gravel, medium- to coarse-grained, chips, well-sorted Sand, coarse-grained; medium-grained gravel; some clay | 2
4
5
5
4 | 66
70
75
80
84 | | Clay; some medium- to coarse-grained gravel | 6
5
3
3 | 90
95
98
101 | | Well 26. Altitude: 4,584 feet | | | | Sand, clayey; some gravel | 5
5
5
10 | 5
10
15
20
30 | | Gravel, coarse-grained Sand, coarse-grained; fine-grained gravel; some clay Shale, gray | 20
50
3 | 50
100
103 | | Well 28. Altitude: 4,592 feet | | | | Sand Clay Sand; fine-grained gravel Gravel Clay | 8
8
17
19
2 | 8
16
33
52
54 | | Gravel Clay Gravel Clay Clay Clay | 18
6
5
12
8 | 72
78
83
95
103 | | Clay
Gravel | 2
3
 | 105
108
108 | Table 8.--Logs of wells drilled by the U.S. Geological Survey--Continued | | Thick-
ness
(feet) | Depth
(feet) | |---|--------------------------|----------------------------| | Well 32. Altitude: 4,582 feet | | | | Sand, fine-grained, clayey | 5
10
5
5 | 5
15
20
25 | | Sand, coarse-grained; some fine- to medium-grained gravel Gravel, fine- to medium-grained Gravel, coarse-grained Silt, clayey; some gravel; some sand Sand, fine-grained; fine-grained gravel | 5
5
5
5 | 30
35
40
45
50 | | Gravel, medium- to coarse-grainedGravel, fine- to coarse-grained | 10
9
 | 60
69
69 | | Well 37. Altitude: 4,586 feet | | | | Topsoil | 5
5 | 5
10 | | clay | 10
5
5 | 20
25
30 | | Sand; gravel; some clayey sand | 10
5
5 | 40
45
50 | | sandGravel, coarse-grained; some medium-grained sand | 5
7 | 55
62 | | Boulder, hard drilling | 2
4
1 | 64
68
69 | Table 9.--Particle-size analyses, statistical total porosity and vertical hydraulic conduc- | | Percentage of sample by particle size by weight Diameter, in millimeters | | | | | | | | | | | | |---|--|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|----------------------------------|--------------------------------|-----------------------------|---------------------------|--------------------------------| | Depth
of
sample
(feet) | Clay
<0.004 | Silt
0.004 to 0.0625 | Very fine sand
0.0625 to 0.125 | Fine sand
0.125 to 0.25 | Medium sand
0.25 to 0.5 | Coarse sand
0.5 to 1 | Very coarse sand
1 to 2 | Very fine gravel
2 to 4 | Fine gravel
4 to 8 | Medium gravel
8 to 16 | Coarse gravel
16 to 32 | Very coarse gravel
32 to 64 | | Well 13 | | | | | | | | | | | | | | 2.0- 2.5
3.0- 3.5
4.0- 4.5
5.0- 5.5
7.0- 7.5 | 5.4
5.9
5.2
5.2
2.7 | 13.4
14.0
11.0
10.5
6.1 | 10.7
12.2
15.3
14.1
13.1 | 19.9
20.8
33.6
33.1
32.5 | 14.0
18.8
19.3
18.7
22.4 | 20.3
14.1
14.2
14.3
22.0 | 13.2
9.2
1.5
4.1 | 3.1
2.8
0
0 | 0
1.1
0
0 | 0
1.0
0
0 | 0
0
0
0 | 0
0
0
0 | | 9.0- 9.5
11.0-11.5
13.0-13.5
16.0-16.5
18.5-19.0 | 4.
3.
5.
4.7
11.4 | Žį. | 10.4
12.4
14.3
19.1
25.6 | 27.2
45.9
34.1
42.7
23.1 | 24.6
33.9
21.2
22.5
7.8 | 30.9
4.3
14.5
3.7
3.1 | 2.5
0
10.7
.2
.2 | 0
0
0
0 | 0
0
0
0 | 0
0
0
0 | 0
0
0
0 | 0
0
0
0 | | 21.5-22.0
24.5-25.0
26.0-26.5
28.5-29.0
29.0-29.5 | 4.6
4.6
4.2
1.5
1.6 | 11.3
4.8
9.2
7.2
6.4 | 13.8
19.6
8.9
4.0
3.6 | 22.2
30.6
16.4
11.0
7.9 | 16.2
23.9
9.8
15.4
12.7 | 11.0
12.8
14.6
14.7
14.7 | 14.5
3.7
13.6
15.8
16.7 | 6.2
0
15.6
15.7
21.6 | .3
0
6.0
11.9
11.1 | 0
0
1.8
2.7
3.8 | 0
0
0
0 | 0
0
0
0 | | 9.5-10.0 | 10.7 | 12.8 | 10.0 | 21.3 | <u>Well</u>
18.6 | 28
13.1 | 10.8 | 2.7 | 0 | 0 | 0 | 0 | characteristics, specific gravity, moisture content, tivity for samples from observation wells 13 and 28 | Median particle
Size, diameter in millimeters | Sorting coefficient | Skewness | Kurtosis | Uniformity
coefficient | Specific gravity
of solids | Moisture content,
percent by weight | Moisture content,
percent by volume | Total porosity | Vertical hydraulic
conductivity at 15.6°C,
meter per day | | |--|---------------------------------|---------------------------------|---------------------------------|--------------------------------|--------------------------------------|--|--|---|--|--| | <u>Well 13</u> | | | | | | | | | | | | 0.26
.23
.18
.19
.23 | 2.8
2.7
2.0
2.0
1.9 | 1.0
.95
.99
1.1
1.2 | 0.24
.19
.21
.20 | 32
21
7.7
8.5
4.5 | 2.67
2.68
2.69
2.69
2.69 | 4.76
6.94
5.68
5.36
4.40 | 8.38
11.38
8.52
9.38
6.38 | 34.23
38.65
44.11
34.90
46.93 | 2.2

.86 | | | .31
.21
.23
.17
.081 | 1.9
1.5
1.9
1.6
2.3 | 1.0
1.1
1.3
.91
.76 | .29
.26
.19
.22 | 4.6
2.7
3.9
4.2
37 |

2.70
2.70 | 3.80
5.06
3.95
3.22
10.52 | 5.7

5.85
4.44
14.73 | 44.03

44.98
48.04
47.76 | 5.2
 | | | .24
.20
.54
.83 | 2.8
1.9
3.6
3.1
2.9 | 1.4
1.0
.89
.96 | .20
.22
.24
.22
.24 | 12
4.0
25
17
19 | 2.71
2.69
2.69
2.69
2.69 | 2.47
4.34
2.35
2.71
1.36 | 6.55 | 43.90

36.42 | .93

.04 | | | • | | 0.5 | | _ | 11 28 | | 45 55 | 20 == | 2 : | | | .21 | 2.8 | .83 | . 19 | 216 | 2.67 | 9.66 | 15.55 | 39.70 | 3.4 | | Table 10.--Monthly precipitation, in inches, from January 1975 to September 1978 at weather stations operated by the feedlot owner at the feedlot and by the U.S. Department of Commerce, National Weather Service at Greeley, Colo. | Month | 1975 | | 19 | 76 | 1977 | | 1978 | | |-------|---------|---------|---------|---------|---------|---------|---------|---------| | | Feedlot | Greeley | Feedlot | Greeley | Feedlot | Greeley | Feedlot | Greeley | | Jan. | 0.12 | 0.02 | 0.02 | 0.10 | 0.38 | 0.13 | 0.40 | 0.50 | | Feb. | .12 | . 14 | . 14 | .50 | .00 | trace | .10 | .13 | | Mar. | . 58 | . 75 | .28 | . 49 | .30 | .44 | . 15 | .09 | | Apr. | 1.26 | 1.86 | 1.13 | 1.76 | 2.87 | 2.21 | 2.48 | 1.83 | | May | 4.88 | 5.34 | 3.13 | 3.69 | 1.20 | 1.91 | 3.40 | 5.22 | | June | .80 | 2.02 | 1.42 | . 74 | .38 | .70 | 1.70 | 1.37 | | July | 3.00 | 2.72 | 1.90 | 1.36 | .70 | 2.16 | .93 | .70 | | Aug. | 1.84 | .63 | .85 | .90 | 1.02 | 1.48 | .64 | .53 | | Sept. | .64 | .41 | 2,21 | 1.92 | .20 | . 14 | .00 | trace | | Oct. | .25 | .32 | .40 | . 35 | .07 | .10 | | | | Nov. | .65 | 1.00 | .04 | .08 | . 45 | .42 | | | | Dec. | . 42 | .87 | .05 | .12 | .72 | .29 | | | | Total | 14.56 | 16.08 | 11.57 | 12.01 | 8.29 | 9.98 | 9.80 | 10.37 |